Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều



Bài tập ôn cuối năm (Phần Đại Số - Phần Hình Học)

B - Phần Hình Học

Bài 2 trang 131 SGK Toán 8 Tập 2: Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.

Lời giải:

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔAOB đều ⇒ BE là đường trung tuyến đồng thời là đường cao

                   ⇒ BE ⊥ AO

                   ⇒ ΔBEC vuông tại E

                   Mà EG là đường trung tuyến

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (1)

ΔCOD đều ⇒ CF là đường trung tuyến đồng thời là đường cao

                   ⇒ CF ⊥ OD

                   ⇒ ΔBFC vuông tại F

                   Mà FG là đường trung tuyến

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (2)

Hình thang ABCD (AB// CD) có: AC = AO + OC = OB + OD = BD

                   ⇒ ABCD là hình thang cân

                   ⇒ AD = BC.

ΔAOD có: AE = EO, FO = FD

                   ⇒ EF là đường trung bình của ΔAOD

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

                   Mà AD = BC (cmt)

                   ⇒ Giải bài 2 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8 (3)

Từ (1); (2); (3) suy ra EF = FG = GE ⇒ ΔEFG đều (đpcm).

Tham khảo các bài giải bài tập Giải bài tập Toán lớp 8 Bài tập ôn cuối năm Phần Hình Học khác:


bai-tap-on-cuoi-nam.jsp


Giải bài tập lớp 8 sách mới các môn học