Cho hai đường thẳng xx', yy' cắt nhau tại O. a) Chứng minh hai tia phân giác Ot, Ot' của
Bài 5: Tính chất tia phân giác của một góc
Luyện tập trang 70-71 sgk Toán 7 Tập 2
Bài 33 trang 70 sgk Toán lớp 7 Tập 2: Cho hai đường thẳng xx', yy' cắt nhau tại O.
a) Chứng minh hai tia phân giác Ot, Ot' của một cặp góc kề bù tạo thành một góc vuông.
b) Chứng minh rằng: Nếu M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot' thì M cách đều hai đường thẳng xx' và yy'.
c) Chứng minh rằng: Nếu điểm M cách đều hai đường thẳng xx', yy' thì M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot'.
d) Khi M ≡ O thì khoảng cách từ M đến xx' và yy' bằng bao nhiêu?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx', yy'.
Hình 33
Lời giải
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông.
b) – TH1: M ∈ Ot
M ∈ Ot do Ot là phân giác của nên M cách đều hai tia Ox và Oy
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot.
- TH2: M ∈ Ot’
M ∈ Ot’ do Ot’ là phân giác của nên M cách đều hai tia Ox, Oy’
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot’.
Vậy với mọi M thuộc đường thẳng Ot hoặc đường thẳng Ot’, M cách đều xx’ và yy’.
c) Ta có M luôn thuộc miền trong của một trong bốn góc:
Mà M cách đều xx’ và yy’ nên theo định lý 2 ta có:
+ Nếu M thuộc miền trong góc xOy ⇒ M thuộc tia Ot.
+ Nếu M thuộc miền trong góc xOy’ ⇒ M thuộc tia Ot’.
+ Nếu M thuộc miền trong góc y’Ox’ ⇒ M thuộc tia đối của tia Ot.
+ Nếu M thuộc miền trong góc x’Oy ⇒ M thuộc tia đối của tia Ot’ .
d) Khi M ≡ O thì khoảng cách từ M đến xx’, yy’ bằng 0.
e) Từ các câu trên ta có nhận xét: tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx’, yy’ thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.
Kiến thức áp dụng
Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
+ Dựa vào định lí đảo : Điểm nằm bên trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.
Xem thêm các bài giải bài tập Toán lớp 7 Bài 5 khác:
- Mục lục Chương III: Quan Hệ Giữa Các Yếu Tố Trong Tam Giác. Các Đường Thẳng Đồng Quy Của Tam Giác
- Bài 5: Tính chất tia phân giác của một góc - Luyện tập trang 70-71)
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều