Đề kiểm tra 15 phút Toán 12 Chương 1 Giải tích có đáp án (Đề 4)
Đề kiểm tra Toán 12
Thời gian làm bài: 15 phút
Câu 1. Đường thẳng y = x - 1 cắt đồ thị hàm số tại các điểm có tọa độ là
Câu 2. Cho hàm số Phương trình tiếp tuyến của đồ thị (C) tại điểm M(1; 4) là
Câu 3. Cho hàm số Phương trình tiếp tuyến của (C) tại điểm M thuộc (C) và có hoành độ bằng
Câu 4. Đồ thị hàm số cắt đường thẳng y = m tại ba điểm phân biệt thì tất cả các giá trị tham số m thỏa mãn là
Câu 5. Cho hàm số có đồ thị (C). Từ điểm M(1;3) có thể kẻ được bao nhiêu tiếp tuyến với đồ thị hàm số (C) ?
A. 0.
B. 3.
C. 2.
D. 1.
Câu 6. Cho hàm số Tất cả giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ít nhất ba điểm phân biệt là
Câu 7. Cho hàm số Tất cả giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt là
Câu 8. Cho hàm số và đường thẳng d: y = x + m. Tập tất cả các giá trị của tham số m sao cho (C) và d cắt nhau tại hai điểm phân biệt là
Câu 1. Chọn C.
Phương trình hoành độ giao điểm :
Thế vào phương trình y = x - 1 được tung độ tương ứng
Vậy đường thẳng cắt đồ thị tại hai điểm là: (0;-1), (2;1)
Câu 2. Chọn D
Ta có y' = 3x2 + 6x ⇒ k = y'(1) = 9.
Phương trình tiếp tuyến tại M(1;4) là
d: y = y'(x0)(x - x0) + y0 = 9(x - 1) + 4 = 9x - 5.
Câu 3. Chọn A.
Ta có y' = -6x2 + 12x.
Với x0 = 3 ⇒ y0 = -5 ⇒ M(3;-5) và hệ số góc k = y^' (3) = -18.
Vậy phương trình tiếp tuyến tại là y = -18(x - 3)-5 = -18x + 49.
Câu 4. Chọn C.
Phương trình hoành độ giao điểm: x3 - 3x2 + 1 = m
Ta có: y' = 3x2 - 6x; y' = 0 ⇔ x = 0 ∨ x = 2.
Bảng biến thiên:
Do đó, đồ thị cắt đường thẳng y = m tại ba điểm phân biệt khi – 3 < m < 1.
Vậy chọn – 3 < m < 1.
Câu 5. Chọn C.
Đường thẳng đi qua M(1;3) có hệ số góc k có dạng d: y = k(x - 1) + 3.
d là tiếp tuyến của (C) khi và chỉ khi hệ sau có nghiệm:
Thay (2) vào (1) ta được
Vậy có 2 tiếp tuyến.
Câu 6. Chọn B.
Phương trình hoành độ giao điểm: -x4 + 2x2 + m = 0 ⇔ m = x4 - 2x2.
Đặt (C): y = x4 - 2x2 và d: y = m
Xét hàm số y = x4 - 2x2.
Ta có y' = 4x3 - 4x; y' = 0 ⇔ x = 0 ∨ x = -1 ∨ x = 1.
Bảng biến thiên:
Đồ thị hàm số đã cho cắt trục hoành tại ít nhất ba điểm phân biệt khi -1 < m < 0.
Vậy chọn -1 < m < 0.
Câu 7. Chọn B.
Phương trình hoành độ giao điểm:
Để đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt ⇔ Phương trình (1) có ba nghiệm phân biệt ⇔ Phương trình (2) có hai nghiệm phân biệt khác 2
Câu 8. Chọn C.
Phương trình hoành độ giao điểm của đồ thị (c) và đường thẳng d:
(C) cắt d tại hai điểm phân biệt ⇔(1) có hai nghiệm phân biệt
Vậy d luôn cắt (C) tại 2 điểm phân biệt.
Xem thêm các Đề thi Toán 12 chọn lọc, có đáp án hay khác:
Đề kiểm tra 15 phút Toán 12 Chương 1 Giải tích có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 12 Chương 1 Giải tích có đáp án (Đề 2)
Đề kiểm tra 15 phút Toán 12 Chương 1 Giải tích có đáp án (Đề 3)
- Giáo án lớp 12 (các môn học)
- Giáo án điện tử lớp 12 (các môn học)
- Giáo án Toán 12
- Giáo án Ngữ văn 12
- Giáo án Vật Lí 12
- Giáo án Hóa học 12
- Giáo án Sinh học 12
- Giáo án Địa Lí 12
- Giáo án Lịch Sử 12
- Giáo án Lịch Sử 12 mới
- Giáo án GDCD 12
- Giáo án Kinh tế Pháp luật 12
- Giáo án Tin học 12
- Giáo án Công nghệ 12
- Giáo án GDQP 12
- Đề thi lớp 12 (các môn học)
- Đề thi Ngữ văn 12
- Đề thi Toán 12
- Đề thi Tiếng Anh 12 mới
- Đề thi Tiếng Anh 12
- Đề thi Vật Lí 12
- Đề thi Hóa học 12
- Đề thi Sinh học 12
- Đề thi Địa Lí 12
- Đề thi Lịch Sử 12
- Đề thi Giáo dục Kinh tế Pháp luật 12
- Đề thi Giáo dục quốc phòng 12
- Đề thi Tin học 12
- Đề thi Công nghệ 12