Thực hành 1 trang 26 Chuyên đề Toán 11 Chân trời sáng tạo
Thực hành 1 trang 26 Chuyên đề Toán 11: Trong mặt phẳng tọa độ Oxy, tìm tọa độ của các điểm là ảnh của điểm lần lượt qua các phép quay Q(O, 45°), Q(O, 90°), Q(O, 180°), Q(O, 360°).
Lời giải:
Ta có . Suy ra OM = 2.
Vẽ đường tròn (C) tâm O bán kính OM.
⦁ Ảnh của điểm qua phép quay Q(O, 45°):
Ta có Q(O, 45°) biến điểm M khác O thành điểm M1 sao cho OM1 = OM = 2 và (OM, OM1) = 45° nên .
Kẻ MH ⊥ Ox tại H.
Tam giác OMH vuông tại H: .
Suy ra .
Ta có .
Suy ra M1 ∈ Oy nên .
Mà OM1 = 2 (chứng minh trên) nên .
Vậy tọa độ M1(0; 2).
⦁ Ảnh của điểm qua phép quay Q(O, 90°):
Ta có Q(O, 90°) biến điểm M khác O thành điểm M2 sao cho OM2 = OM = 2 và (OM, OM2) = 90° nên .
Suy ra tam giác MOM2 vuông cân tại O.
Ta có .
Suy ra .
Khi đó tam giác MOM2 có OM1 là đường phân giác.
Vì vậy OM1 cũng là đường trung trực của tam giác MOM2 hay Oy là đường trung trực của tam giác MOM2.
Suy ra M2 là ảnh của điểm M qua phép đối xứng trục Oy.
Do đó hai điểm và M2 có cùng tung độ và có hoành độ đối nhau.
Vậy tọa độ .
⦁ Ảnh của điểm qua phép quay Q(O, 180°):
Ta có Q(O, 180°) biến điểm M khác O thành điểm M3 sao cho OM3 = OM = 2 và (OM, OM3) = 180° nên .
Suy ra O là trung điểm của MM3.
Khi đó
Vì vậy
Vậy tọa độ .
⦁ Ảnh của điểm qua phép quay Q(O, 360°):
Ta có Q(O, 360°) biến điểm M khác O thành điểm M4 sao cho OM4 = OM = 2 và (OM, OM4) = 360° nên .
Tức là, M4 ≡ M.
Vậy tọa độ .
Lời giải Chuyên đề Toán 11 Bài 5: Phép quay hay, chi tiết khác:
Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Cánh diều
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Lớp 11 - Kết nối tri thức
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT
- Lớp 11 - Chân trời sáng tạo
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST
- Lớp 11 - Cánh diều
- Soạn văn 11 Cánh diều (hay nhất)
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Toán 11 - Cánh diều
- Giải sgk Vật Lí 11 - Cánh diều
- Giải sgk Hóa học 11 - Cánh diều
- Giải sgk Sinh học 11 - Cánh diều
- Giải sgk Lịch Sử 11 - Cánh diều
- Giải sgk Địa Lí 11 - Cánh diều
- Giải sgk Giáo dục KTPL 11 - Cánh diều
- Giải sgk Tin học 11 - Cánh diều
- Giải sgk Công nghệ 11 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
- Giải sgk Giáo dục quốc phòng 11 - Cánh diều
- Giải sgk Âm nhạc 11 - Cánh diều