Bài 5 trang 29 Chuyên đề Toán 11 Chân trời sáng tạo

Bài 5 trang 29 Chuyên đề Toán 11: Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’ và nằm ngoài đoạn A’B. Gọi G và G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’. Chứng minh rằng ∆OGG’ là tam giác vuông cân.

Lời giải:

Bài 5 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Do DOAB là tam giác vuông cân nên OA = OB và AOB^=90°.

Do DOA’B’ là tam giác vuông cân nên OA’ = OB’ và A'OB'^=90°.

Phép quay tâm O, góc quay 90° biến:

⦁ Điểm O thành điểm O;

⦁ Điểm A thành điểm B;

⦁ Điểm A’ thành điểm B’.

Do đó ảnh của ∆OAA’ qua phép quay tâm O, góc quay 90° là ∆OBB’.

Mà G, G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’.

Vì vậy ảnh của G qua phép quay tâm O, góc quay 90° là G’.

Suy ra OG = OG’ và GOG'^=OG,OG'=90°.

DOGG’ có OG = OG’ và GOG'^=90° nên là tam giác vuông cân tại O.

Vậy ∆OGG’ vuông cân tại O.

Lời giải Chuyên đề Toán 11 Bài 5: Phép quay hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 sách mới các môn học