Tìm đa thức bậc ba f(x) = ax^3 + bx^2 + cx + 1 (với a khác 0) biết f(-1) = -2

Bài 7 trang 22 Chuyên đề Toán 10: Tìm đa thức bậc ba f(x) = ax3 + bx2 + cx + 1 (với a ≠ 0 ) biết f(–1) =  –2, f(1) = 2, f(2) = 7.

Lời giải:

f(–1) =  –2  a(–1)3 + b(–1)2 + c(–1) + 1 = –2  –a + b – c = –3 (1)

f(1) =  2  a . 13 + b . 12 + c . 1 + 1 = 2  a + b + c = 1 (2)

f(2) =  7  a . 23 + b . 22 + c . 2 + 1 = 7  8a + 4b + 2c = 6  4a + 2b + c = 3 (3)

Từ (1), (2) và (3) ta có hệ phương trình:

Tìm đa thức bậc ba f(x) = ax^3 + bx^2 + cx + 1 (với a khác 0) biết f(-1) = -2 (ảnh 1)

Giải hệ này ta được a = 1, b = –1, c = 1.

Vậy đa thức f(x) là x3 – x2 + x + 1.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học