Viết phương trình của conic (C) trong mỗi trường hợp sau

Bài 3 trang 64 Chuyên đề Toán 10: Viết phương trình của conic (C) trong mỗi trường hợp sau:

a) (C) có tiêu điểm F(8; 0), đường chuẩn Δ: x – 2 = 0 và tâm sai e = 2;

b) (C) có tiêu điểm F(–4; 0), đường chuẩn Δ:x+254=0 và tâm sai e=45.

Lời giải:

a) Gọi M(x; y) là điểm bất kì thuộc conic. Khi đó, ta có: MFd(M;Δ)=e

(8-x)2+(0-y)2|x-2|=2

(8-x)2+(0-y)2=2|x-2|

(8-x)2+(0-y)2=4|x-2|2

(64-16x+x2)+y2=4(x2-4x+4)

3x2-y2=48

x216-y248=1.

Vậy phương trình của conic đã cho là x216-y248=1.

b) Gọi M(x; y) là điểm bất kì thuộc conic. Khi đó, ta có: MFd(M;Δ)=e

(-4-x)2+(0-y)2|x+254|=45

(-4-x)2+(0-y)2=45|x+254|

(-4-x)2+(0-y)2=1625|x+254|2

(16+8x+x2)+y2=1625(x2+252x+62516)

16+8x+x2+y2=1625x2+8x+25

925x2+y2=9

x225+y29=1.

Vậy phương trình của conic đã cho là x225+y29=1.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học