Trắc nghiệm Đường kính và dây của đường tròn có đáp án (phần 2) - Toán lớp 9
Tài liệu bài tập trắc nghiệm Đường kính và dây của đường tròn có đáp án (phần 2) Toán lớp 9 chọn lọc, có đáp án với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.
Câu 1: Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 10cm; CD = 8cm; MC = 1cm. Bán kinh R và khoảng cách từ tâm O đến dây CD lần lượt là:
Lời giải:
Xét đường tròn (O).
Kẻ OE ⊥ AB tại E suy ra E là trung điểm của AB, kẻ OF ⊥ CD tại F suy ra F là trung điểm của CD
Xét tứ giác OEMF có nên OEIF là hình chữ nhật, suy ra FM = OE
Ta có CD = 8cm ⇒ FC = 4cm mà MC = 1cm ⇒ FM = FC – MC = 4 – 1 = 3cm
nên OE = FM = 3cm
E là trung điểm của AB nên
Áp dụng định lý Pytago cho tam giác vuông OEA ta có:
Lại có nên áp dụng định lý Pytago cho tam giác vuông OFD ta có:
Do đó khoảng cách từ tâm đến dây CD là 3√2 cm
Đáp án cần chọn là: C
Câu 2: Cho nửa đường tròn (O), đường kính AB và một dây CD. Kẻ AE và BF vuông góc với CD lần lượt tại E và F. So sánh độ dài CE và DF.
A. CE > DF
B. CE = 2DF
C. CE < DF
D. CE = DF
Lời giải:
Lấy I là trung điểm EF
Xét tứ giác AEFB có AE // FB (vì cùng vuông với EF) nên AEFB là hình thang vuông tại E, F
Ta có OI là đường trung bình của hình thang AEFB nên OI // AE // FB ⇒ OI ⊥ EF
Hay OI ⊥ CD nên I là trung diểm CD (quan hệ giữa dây và đường kính)
Ta có IE = IF; IC = ID ⇒ IE – IC = IF – ID ⇔ EC = DF
Đáp án cần chọn là: D
Câu 3: Cho nửa đường tròn (O), đường kính AB và một dây MN. Kẻ AE và BF vuông góc với MN lần lượt tại E và F. So sánh độ dài OE và OF.
Lời giải:
Lấy I là trung điểm EF
Xét tứ giác AEFB có AE // FB (vì cùng vuông với EF) nên AEFB là hình thang vuông tại E, F
Ta có OI là đường trung bình của hình thang AEFB nên OI // AE // FB ⇒ OI ⊥ EF
Hay OI ⊥ CD nên I là trung diểm CD (quan hệ giữa dây và đường kính)
Xét tam giác OEF có OI vừa là đường cao vừa là đường trung tuyến nên OEF cân tại O
Suy ra OE = OF
Đáp án cần chọn là: A
Câu 4: Cho đường tròn (O), đường kính AB. Kẻ hai dây AC và BD song song. So sánh độ dài AC và BD
A. AC > BD
B. AC < BD
C. AC = BD
D. AC = 3BD
Lời giải:
Kẻ đường thẳng qua O vuông góc với A tại E và cắt BD tại F thì EF BD tại F vì AC // BD.
Xét hai tam giác vuông OEA và tam giác OFB có OB = OA; (so le trong)
Nên ΔAEO = ΔBFO (ch-gn) ⇒ OE = OF ⇒ AC = DB (hai dây cách đều tâm thì bằng nhau)
Đáp án cần chọn là: C
Câu 5: Cho đường tròn (O), đường kính AB. Lấy điểm C là trung điểm đoạn OB. Kẻ dây MN qua C và dây AD//MN. So sánh độ dài AD và MN
A. AD = 2.MN
B. AD = MN
C. AD > MN
D. AD < MN
Lời giải:
Kẻ đường thẳng qua O vuông góc với AD tại E và cắt MN tại F thì EF ⊥ MN tại F vì AC // MN
Xét hai tam giác vuông OEA và tam giác OFC có:
Hay OE > OF suy ra AD < MN (dây nào xa tâm hơn thì dây đó nhỏ hơn)
Đáp án cần chọn là: D
Câu 6: Cho đường tròn (O), dây cùng AB và CD với CD < AB. Giao điểm K của các đường thẳng AB và CD nằm ngoài đường tròn. Vẽ đường tròn (O; OK), đường tròn này cắt KA và KC lần lượt tại M và N. So sánh KM và KN.
Lời giải:
Xét đường tròn (O; OB)
Kẻ OE ⊥ CD; OF ⊥ AB tại E; F mà CD < AB ⇒ OE > OF (dây nào lớn hơn thì gần tâm hơn)
Xét đường trong (O; OK) có OE ⊥ KN; OF ⊥ KM tại El F mà OE > OF
⇒ KN < KM (liên hệ giữa dây và khoảng cách từ tâm đến dây)
Đáp án cần chọn là: B
Câu 7: Cho đường tròn (O), dây cùng AB và CD với CD = AB. Giao điểm K của các đường thẳng AB và CD nằm ngoài đường tròn. Vẽ đường tròn (O; OK), đường tròn này cắt KA và KC lần lượt tại M và N. So sánh KM và KN.
Lời giải:
Xét đường tròn (O; OB)
Kẻ OE ⊥ CD; OF ⊥ AB tại E; F mà CD = AB ⇒ OE = OF (dây nào lớn hơn thì gần tâm hơn)
Xét đường trong (O; OK) có OE ⊥ KN; OF ⊥ KM tại El F mà OE = OF
⇒ KN = KM (liên hệ giữa dây và khoảng cách từ tâm đến dây)
Đáp án cần chọn là: C
Câu 8: Cho đường tròn (O; 10cm). Dây AB và CD song song, có độ dài lần lượt là 16cm và 12cm. Tính khoảng cách giữa 2 dây.
A. 14cm
B. 10cm
C. 12cm
D. 16cm
Lời giải:
Kẻ đường thẳng qua O vuông góc với CD tại E và cắt Db tại F thì EF ⊥ AB vì AB // CD
Khi đó E là trung điểm của CD và F là trung điểm của AB (đường kính vuông góc với dây thì đi qua trung điểm dây đó). Nên ED = 6cm; FB = 8cm; OD = OB= 10cm
Áp dụng định lý Pytago cho tam giác vuông OED ta được:
Áp dụng định lý Pytago cho tam giác vuông OFB ta được:
Vậy khoảng cách giữa hai dây là EF = OE + OF = 14cm
Đáp án cần chọn là: A
Câu 9: Cho đường tròn (O; 8cm). Dây AB và CD song song, có độ dài lần lượt là 14cm và 10cm. Tính khoảng cách giữa 2 dây.
Lời giải:
Kẻ đường thẳng qua vuông góc với CD tại E và cắt AB tại F thì EF ⊥ AB vì AB // CD
Khi đó E là trung điểm của CD và F là trung điểm của AB (đường kính vuông góc với dây thì đi qua trung điểm dây đó).
Áp dụng định lý Pytago cho tam giác vuông OED ta được:
Áp dụng định lý Pytago cho tam giác vuông OFB ta được:
Vậy khoảng cách giữa hai dây là:
Đáp án cần chọn là: D
Câu 10: Cho đường tròn (O; R). Hai dây AB, CD song song với nhau sao cho tâm O nằm trong dải song song tạo bởi AB, CD. Biết khoảng cách giữa hai dây đó bằng 11cm và AB = 10√3 cm, CD = 16cm. Tính R
Lời giải:
Kẻ OH ⊥ AB; OK ⊥ CD (H ∈ AB; K ∈ CD)
Theo bài ra ta có HK = 11 (cm)
Khi đó ta có H, K lần lượt là trung điểm của AB và CD (quan hệ vuông góc giữa đường kính và dây cung)
Áp dụng định lý Pytago ta có: OB2 = OD2 ⇔ HB2 + OH2 = OK2 + KD2
Đặt OH = x (0 < x < 11) ⇒ OK = 11 – x
Khi đó ta có: HB2 + x2 = (11 – x)2 + KD2
Đáp án cần chọn là: C
Câu 11: Cho tam giác ABC nhọn và có các đường cao BD, CE. So sánh BC và DE
Lời giải:
Lấy I là trung điểm của BC
Xét tam giác vuông BDC có DI là đường trung tuyến ứng với cạnh huyền nên
Xét tam giác vuông BEC có EI là đường trung tuyến ứng với cạnh huyền nên
Từ đó hay bốn điểm B, C, D, E cùng thuộc đường tròn
Xét có BC là đường kính và DE là dây không đi qua tâm nên BC > DE
Đáp án cần chọn là: C
Câu 12: Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm của CM và DN. So sánh AE và DM
Lời giải:
+ Ta có góc AND = góc ECN (vì cùng phụ với góc CNE) nên
+ Gọi I là trung điểm của DM
Xét tam giác vuông ADM ta có AI = ID = IM = . Xét tam giác vuông DEM ta có EI = ID = IM = nên EI = ID = IM = IA =
Do đó bốn điểm A, D, E, M cùng thuộc đường tròn tâm I bán kính R =
Xét có DM là đường kính và AE là dây không đi qua tâm nên DM > AE
Đáp án cần chọn là: D
Câu 13: Cho đường tròn (O), đường kính AB = 14cm, dây CD có độ dài 12cm vuông góc với AB tại H nằm giữa O và B. Độ dài HA là?
Lời giải:
Xét (O) có AB ⊥ CD tại H và AB là đường kính nên H là trung điểm của CD
Áp dụng định lý Pytago cho tam giác vuông OHD ta được:
Đáp án cần chọn là: A
Câu 14: Cho đường tròn (O), đường kính AB = 20cm, dây CD có độ dài 16cm vuông góc với AB tại H nằm giữa O và B. Độ dài HA là?
A. 12cm
B. 18cm
C. 16cm
D. 15cm
Lời giải:
Xét (O) có AB ⊥ CD tại H và AB là đường kính nên H là trung điểm của CD
Áp dụng định lý Pytago cho tam giác vuông OHD ta được:
Khi đó HA = OA + OH = 10 + 6 = 16 cm
Đáp án cần chọn là: C
Câu 15: Cho đường tròn (O) và một dây CD. Từ O kẻ tia vuông góc với CD tại M, cắt (O; R) tại H. Biết CD = 16cm, MH = 4cm. Bán kính R bằng:
Lời giải:
Do OM ⊥ CD ⇒ M là trung điểm của CD
Gọi R là bán kính của đường tròn ⇒ OC = R
Ta có OM = OH – HM = R – 4
Áp dụng định lý Pytago trong tam giác vuông OMC ta có:
Đáp án cần chọn là: D
Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:
- Trắc nghiệm Sự xác định đường tròn. Tính chất đối xứng của đường tròn có đáp án
- Trắc nghiệm Sự xác định đường tròn. Tính chất đối xứng của đường tròn có đáp án (phần 2)
- Trắc nghiệm Đường kính và dây của đường tròn có đáp án
- Trắc nghiệm Dấu hiệu nhận biết tiếp tuyến của đường tròn có đáp án
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều