Cho tam giác ABC (AB < AC) ngoại tiếp đường tròn (I) với các tiếp điểm trên BC

Bài 13 trang 129 VTH Toán 9 Tập 2: Cho tam giác ABC (AB < AC) ngoại tiếp đường tròn (I) với các tiếp điểm trên BC, CA, AB lần lượt là D, E, F. Gọi X và Y lần lượt là chân đường cao kẻ từ B và C xuống CI và BI. Chứng minh rằng:

a) DBXF, DCYE là các tứ giác nội tiếp.

b) Bốn điểm X, Y, E, F thẳng hàng.

Lời giải:

Cho tam giác ABC (AB < AC) ngoại tiếp đường tròn (I) với các tiếp điểm trên BC

a) Xét ∆BXI vuông tại X có đường tròn ngoại tiếp tam giác này có tâm là trung điểm của cạnh huyền BI. Do đó ba điểm B, X, I cùng nằm trên đường tròn đường kính BI.

Xét ∆BFI vuông tại X có đường tròn ngoại tiếp tam giác này có tâm là trung điểm của cạnh huyền BI. Do đó ba điểm B, F, I cùng nằm trên đường tròn đường kính BI.

Xét ∆BDI vuông tại X có đường tròn ngoại tiếp tam giác này có tâm là trung điểm của cạnh huyền BI. Do đó ba điểm B, D, I cùng nằm trên đường tròn đường kính BI.

Do đó 5 điểm D, B, X, F, I cùng nằm trên đường tròn đường kính BI, nên tứ giác DBXF là tứ giác nội tiếp.

Chứng minh tương tự, ta cũng có 5 điểm D, C, Y, E, I cùng nằm trên đường tròn đường kính CI, nên tứ giác DCYE là tứ giác nội tiếp.

b) * Chứng minh tương tự câu a, ta có bốn điểm B, X, Y, C cùng nằm trên đường tròn đường kính BC nên tứ giác BXYC là tứ giác nội tiếp.

Suy ra YXC^=YBC^ (hai góc nội tiếp cùng chắn cung CY). (1)

Ta có tứ giác BXFI là tứ giác nội tiếp đường tròn đường kính BI nên FXI^=FBI^ (hai góc nội tiếp cùng chắn cung FI). (2)

Mặt khác, tam giác ABC ngoại tiếp đường tròn (I) nên BI là đường phân giác của góc ABC, do đó ABI^=IBC^ hay FBI^=YBC^. (3)

Từ (1), (2) và (3) suy ra YXC^=FXI^ hay YXC^=FXC^, do đó ba điểm X, F, Y thẳng hàng. (4)

* Chứng minh tương tự như trên, ta cũng có: XYB^=XCB^; EYI^=ECI^; ECI^=XCB^.

Suy ra XYB^=EYI^ hay XYB^=EYB^ nên ba điểm X, E, Y thẳng hàng. (5)

Từ (4) và (5) suy ra bốn điểm X, Y, E, F thẳng hàng.

Lời giải vở thực hành Toán 9 Bài tập ôn tập cuối năm hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 9 Kết nối tri thức hay, chi tiết khác:


Giải bài tập lớp 9 Kết nối tri thức khác