Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD = 2DC

Bài 4 (9.39) trang 88 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD = 2DC. Trên đường thẳng AC, lấy điểm E sao cho C là trung điểm của AE (H.9.47). Chứng minh rằng tam giác ABE cân tại A.

Gợi ý. D là trọng tâm của tam giác ABE; tam giác này có đường phân giác AD đồng thời là đường trung tuyến.

Cho tam giác ABC có đường phân giác AD, D nằm trên BC sao cho BD = 2DC

Lời giải:

ΔABE có C là trung điểm của AE nên BC là đường trung tuyến của ΔABE.

BC = BD + DC = 2DC + DC = 3DC.

Do đó DC = 13BC, BD = 23BC.

Trên đường trung tuyến BC có điểm D thỏa mãn BD = 23BC nên D là trọng tâm của ΔABE.

Do đó AD là đường trung tuyến của ΔABE.

ΔABE có AD vừa là đường trung tuyến, vừa là đường phân giác nên ΔABE cân tại A.

Xem thêm các bài giải vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:


Giải bài tập lớp 7 Kết nối tri thức khác