Gọi AI và AM lần lượt là đường cao và đường trung tuyến

Bài 3 (9.38) trang 87 vở thực hành Toán lớp 7 Tập 2: Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng:

a) AI < 12(AB + AC);

b) AM < 12(AB + AC).

Lời giải:

Gọi AI và AM lần lượt là đường cao và đường trung tuyến

a) Trong tam giác vuông ABI có AB là cạnh huyền nên AI < AB.

Trong tam giác vuông ACI có AC là cạnh huyền nên AI < AC.

Suy ra 2AI < AB + AC hay AI < 12(AB + AC).

b) Lấy điểm D sao cho M là trung điểm của AD.

Xét ∆ABM và ∆DCM có: BM = CM; AM = MD; AMB^=CMD^,

do đó ∆ABM = ∆DCM (c.g.c). Suy ra AB = CD.

Trong tam giác ACD, ta có AD < CD + AC hay 2AM < AB + AC.

Suy ra AM < 12(AB + AC).

Xem thêm các bài giải vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:


Giải bài tập lớp 7 Kết nối tri thức khác