Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz
Bài 4 (4.19) trang 67 vở thực hành Toán lớp 7 Tập 1: Cho tia Oz là tia phân giác của góc xOy. Lấy các điểm A, B, C lần lượt thuộc các tia Ox, Oy, Oz sao cho
a) Chứng minh rằng ∆OAC = ∆OBC.
b) Lấy điểm M trên tia đối của tia CO. Chứng minh rằng ∆MAC = ∆MBC.
Lời giải:
a) Xét hai tam giác OAC và OBC, ta có:
(OC là tia phân giác của góc AOB);
OC là cạnh chung;
Vậy ∆OAC = ∆OBC (g – c – g).
b) Xét hai tam giác MAC và MBC có:
C A= CB (do ∆OAC = ∆OBC),
(do ∆OAC = ∆OBC),
MC là cạnh chung.
Vậy ∆MAC = ∆MBC (c – g – c).
Xem thêm các bài giải vở thực hành Toán lớp 7 sách Kết nối tri thức hay, chi tiết khác:
Giải bài tập lớp 7 Kết nối tri thức khác
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT