Giải Vở bài tập Toán 7 trang 94 Tập 2 Cánh diều

Với Giải VBT Toán 7 trang 94 Tập 2 trong Bài 7: Tam giác cân Vở bài tập Toán lớp 7 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VBT Toán 7 trang 94.

Câu 2 trang 94 vở bài tập Toán lớp 7 Tập 2:Cho tam giác ABC có A^ = 120o. Tia phân giác của góc A cắt BC tại D. Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh tam giác ADE đều.

Lời giải:

Cho tam giác ABC có góc A = 120 độ. Tia phân giác của góc A cắt BC tại D

Vì AD là tia phân giác của góc BAC, nên

BAD^= CAD^ = 12BAC^ = 60o

Tức là DAE^ = 60°

Ta có DE // AB (giả thiết) nên ADE^= DAB^ (hai góc so le trong) do đó ADE^ = 60°.

Vậy tam giác ADE có DAE^= ADE^ = 60o nên tam giác ADE là tam giác cân và có một góc bằng 60° nên tam giác ADE là tam giác đều.

Câu 3 trang 94 vở bài tập Toán lớp 7 Tập 2:Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC. Chứng minh tam giác MAB vuông cân

Lời giải:

Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của cạnh huyền BC

Vì tam giác ABC vuông cân tại A nên B^ = 45°.

Xét hai tam giác AMB và AMC, ta có:

AB = AC (vì tam giác ABC cân tại A);

MB = MC (vì M là trung điểm của BC)

AM là cạnh chung.

Suy ra ∆AMB = ∆AMC (c.c.c). Do đó AMB^ = AMC^.

AMB^ + AMC^ = 180o (hai góc kề bù) nên AMB^ = AMC^ = 90o

Từ đó ∆AMB vuông tại M có B^ = 45o, nên BAM^ = 45°.

Suy ra BAM^ = B^

Vậy tam giác MAB là tam giác vuông cân.

Câu 4 trang 94 vở bài tập Toán lớp 7 Tập 2:Trong Hình 55, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng. Chứng minh rằng:

a) AD // BE, BD // CE.

b) ABE^=DBC^ = 120o.

c) AE = CD.

Trong Hình 55, cho biết các tam giác ABD và BCE là các tam giác đều và A, B, C thẳng hàng

Lời giải:

a) Vì tam giác ABD và BCE là tam giác đều nên:

ABD^ = BAD^ = 60oBCE^ = CBE^ = 60o .

Hai đường thẳng AD và BE cắt đường thẳng AB có hai góc đồng vị BAD^, CBE^ thoả mãn BAD^ = CBE^ nên AD // BE.

Hai đường thẳng BD và CE cắt đường thẳng BC có hai góc đồng vị BCE^, ABD^ thoả mãn BCE^ = ABD^ nên BD // CE.

b) Ta có: ABE^+CBE^ = 180o (hai góc kề bù) và CBE^ = 60°.

Suy ra ABE^= 180° – CBE^ = 180° – 60° = 120°.

Ta có: DBC^ + ABD^ = 180° (hai góc kề bù) và ABD^ = 60°.

Suy ra DBC^ = 180° – ABD^ = 180° – 60° = 120°.

Vậy ABE^ = DBC^ = 120o.

c) Xét hai tam giác ABE và DBC, ta có

AD = BD (do tam giác ABD đều)

ABE^= DBC^ (chứng minh ở trên)

BE = BC (do tam giác BCE đều)

Suy ra ∆ABE = ∆DBC (c.g.c)

Do đó AE = CD (hai cạnh tương ứng).

Lời giải Vở bài tập Toán 7 Bài 7: Tam giác cân Cánh diều hay khác:

Xem thêm lời giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:


Giải bài tập lớp 7 Cánh diều khác