Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm

Câu 4 trang 117 vở bài tập Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm của ba đường trung trực của tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm

Do I thuộc đường thẳng trung trực của đoạn thẳng BC nên IB = IC.

Suy ra tam giác IBC là tam giác cân tại I.

Suy ra IBC^ = ICB^ (hai góc đáy của tam giác cân).

Vì BI là tia phân giác góc B nên ABC^ = 2 IBC^.

Vì CI là tia phân giác góc C nên ACB^ = 2ICB^.

Suy ra ABC^ = ACB^. Chứng minh tương tự ta cũng có BAC^ = BCA^.

Do đó ABC^ = ACB^ = BAC^. Vậy tam giác ABC là tam giác đều.

Xem thêm các bài giải Vở bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:


Giải bài tập lớp 7 Cánh diều khác