15 Bài tập Liên hệ giữa dây và khoảng cách từ tâm đến dây lớp 9 (có đáp án)

Với 15 Bài tập Liên hệ giữa dây và khoảng cách từ tâm đến dây lớp 9 có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm Bài tập Liên hệ giữa dây và khoảng cách từ tâm đến dây.

Câu 1: Cho đường tròn (O; R = 25). Khi đó dây cung lớn nhất của đường tròn đó bằng?

A. 12,5

B. 25

C. 50

D. 20

Lời giải:

Trong đường tròn thì đường kính là dây lớn nhất của đường tròn đó

Vậy dây lớn nhất của đường tròn là 50

Chọn đáp án C.

Câu 2: Cho đường tròn (O; R = 20). Cho dây cung MN có độ dài 36. Khoảng cách từ tâm O đến dây cung là?

A. 15

B. √35

C. √76

D. 20

Lời giải:

Khoảng cách từ O đến dây cung MN là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 3: Cho đường tròn (O; R), có dây cung MN có độ dài là 24cm, khoảng cách từ O đến đường thẳng MN là 16cm. Độ dài bán kính R là?

A. 24cm

B. 25cm

C. 16cm

D. 20cm

Lời giải:

Độ dài bán kính của đường tròn là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án D.

Câu 4: Cho đường tròn (O), đường kính AB. Kẻ hai dây AC và BD song song. Khi đó:

A. AC = BD

B.AC = 2 BD

C. BD = 2 AC

D. Tất cả sai

Chứng minh AC = BD.

Lời giải:

Qua O dựng đường thẳng vuông góc với AC và BD. Đường thẳng này cắt AC và BD lần lượt tại M và N..

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A

Câu 5: Cho đường tròn (O; 5cm). Dây AB và CD song song, có độ dài lần lượt là 8 cm và 6 cm. Tính khoảng cách giữa hai dây.

A. 6 cm

B.8 cm

C. 7 cm

D. 9 cm

Lời giải:

Qua O dựng đường thẳng vuông góc với AB và CD, cắt AB và CD lần lượt tại M và N.

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Áp dụng định lí Py tago vào tam giác vuông OND và OMB ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Khoảng cách hai dây AB và CD là: MN = OM + ON = 3 + 4 = 7 cm

Chọn đáp án C.

Câu 6: Cho đường tròn (O) đường kính AB = 13 cm, dây CD có độ dài 12 cm vuông góc với AB tại H ( H nằm giữa O và A). Tính HB.

A. 6cm

B. 8cm

C.9cm

D. 10 cm

Lời giải:

Do AB là đường kính nên bán kính đường tròn là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 7: Cho đường tròn tâm O bán kính 3 cm và hai dây AB và AC. Biết AB = 5cm, AC = 2cm. Trong 2 dây AB và AC dây nào gần tâm hơn?

A. AB

B. AC

C. Chưa thể kết luận được

D. Hai dây cách đều tâm

Lời giải:

Ta có: AB > AC ( 5 cm > 3 cm) nên dây AB gần tâm hơn.

Chọn đáp án A.

Câu 8: Cho đường tròn tâm O, bán kính R = 6cm ngoại tiếp tam giác ABC vuông tại A có AB = 6cm, AC = 8 cm. Trong các dây AB , BC và AC thì dây nào gần tâm hơn?

A. AB

B. BC

C. AC

D. chưa kết luận được.

Lời giải:

Áp dụng định lí Pytago vào tam giác ABC ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100 nên BC =10 cm

Ta có: AB < AC < BC ( 6 cm < 8 cm < 10 cm )

Do đó, dây BC gần tâm nhất, dây AB xa tâm nhất

Chọn đáp án B.

Câu 9: Cho đường tròn tâm O, bán kính R = 10cm. Tam giác ABC nội tiếp đường tròn tâm O, biết góc A là góc tù. Hỏi trong các dây AB, BC và AC thì dây nào gần tâm nhất?

A. AB

B. AC

C. BC

D. Chưa kết luận được

Lời giải:

Tam giác ABC có góc A là góc tù nên Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Mà cạnh đối diện với góc A là cạnh BC .

Áp dụng định lí: trong 1 tam giác cạnh đối diện với góc lớn hơn thì lớn hơn ta được:

BC > AC và BC > AB

Vậy tam giác ABC có độ dài cạnh BC là lớn nhất nên dây BC gần tâm nhất.

Chưa thể kết luận dây nào xa tâm nhất.

Chọn đáp án C.

Câu 10: Cho tam giác ABC cân tại A nội tiếp đường tròn tâm (O). Tìm khẳng định đúng?

A. Hai dây AB và AC cách đều tâm.

B. Dây BC gần tâm nhất.

C. Dây BC gần tâm hơn dây AC.

D. Dây AB gần tâm hơn dây BC.

Lời giải:

Vì tam giác ABC cân tại A nên AB = AC

Suy ra: hai dây AB và AC cách đều tâm.

Ta chưa thể so sánh độ dài AB và BC; AC và BC nên ta chưa thể kết luận dây nào gần tâm hơn, dây nào xa tâm hơn hay các dây cách đều tâm.

Chọn đáp án A.

Xem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:


Giải bài tập lớp 9 sách mới các môn học