Phương pháp chia đơn thức, đa thức cho đơn thức

Với Phương pháp chia đơn thức, đa thức cho đơn thức môn Toán lớp 8 sẽ giúp học sinh nắm vững lý thuyết, biết cách làm các dạng bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi môn Toán 8.

Phương pháp chia đơn thức, đa thức cho đơn thức

A. Chia đơn thức cho đơn thức

I. Lý thuyết: 

 - Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A

- Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau:

         + Chia hệ số của đơn thức A cho hệ số của đơn thức B

+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

+ Nhân các kết quả vừa tìm được với nhau. 

- Nhắc lại một số quy tắc về lũy thừa: 

Với mọi x,y ≠ 0; m,n ∈ N, m ≥ n thì: 

xm.xn = xm+n

Phương pháp chia đơn thức, đa thức cho đơn thức

xm.ym = (xy)m

Phương pháp chia đơn thức, đa thức cho đơn thức 

II. Các dạng bài: 

1. Dạng 1: Áp dụng quy tắc chia đơn thức cho đơn thức để thực hiện phép tính.  

a. Phương pháp giải:

Áp dụng quy tắc chia đơn thức cho đơn thức để tính. 

b. Ví dụ minh họa:  

a, 84 ; 8-3 

= 84 -(-3) 

= 87 

b, 3x4 : 5x2  

= (3 : 5).(x4 : x2

= Phương pháp chia đơn thức, đa thức cho đơn thức 

c, x7y4 : x2y3  

= (x7 : x2).(y4 : y3)

= x5

2. Dạng 2: Tìm điều kiện để biểu thức A chia hết cho biểu thức B 

a. Phương pháp giải: 

Sử dụng lý thuyết về điều kiện về số mũ của các biến để đơn thức A chia hết cho đơn thức B. 

b. Ví dụ minh họa: 

Tìm điều kiện của n để biểu thức A chia hết cho biểu thức B trong các trường hợp sau:

a, A = 14x8yn và B = -7x7y4

ta có A : B = (14 : -7).(x8 :x7).(yn :y4)

= -2.x.yn-4 

Để A chia hết cho B thì: 

Phương pháp chia đơn thức, đa thức cho đơn thức   

b, A = 20x6yz2n - 5 và B = 5x3z3 

ta có A : B = (20 : 5).(x6 :x3).y.(z2n - 5 :z3)

= 4.x3.y.z2n-5-3 

= 4.x3.y.z2n - 8 

Để A chia hết cho B thì: 

Phương pháp chia đơn thức, đa thức cho đơn thức   

c, A = 2xyn và B = y2 

ta có A : B = (2 : 1).x.(yn :y2)

= 2.x.yn-2 

Để A chia hết cho B thì: 

 Phương pháp chia đơn thức, đa thức cho đơn thức 

B. Chia đa thức cho đơn thức

I. Lý thuyết: 

Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B) ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau.

II. Các dạng bài: 

1. Dạng 1: Áp dụng quy tắc chia đa thức cho đơn thức để thực hiện phép tính

a. Phương pháp giải: 

Áp dụng quy tắc chia đa thức cho đơn thức (trong trường hợp chia hết) và chia đơn thức cho đơn thức (trong trường hợp chia hết) để tính.

b. Ví dụ minh họa: 

Thực hiện phép tính: 

a, (3.56 - 4.54 + 2.53) : 53  

= (3.56 : 53) – (4.54 : 53) + (2.53 : 53)

 = 3.54 - 4.52 + 2.5

= 3.625 – 4.25 + 10

= 1785  

b, (3x4 + 7x5 - 2x3) : x3 

= (3x: x3) + (7x5: x3) - (2x3: x3

= 3x + 7x2 - 2 

= 7x2 + 3x + 2

c, [2(x + y)3 - 3(x + y)2] : 3(x + y)  

= [2(x + y)3 : 3(x + y)] - [3(x + y)2 : 3(x + y)] 

Phương pháp chia đơn thức, đa thức cho đơn thức

2. Dạng 2: Tìm điều kiện để biểu thức A chia hết cho biểu thức B

a. Phương pháp giải: 

Sử dụng lý thuyết về điều kiện về số mũ của các biến để đa thức A chia hết cho đơn thức B (nghĩa là mọi hạng tử của đa thức A phải chia hết cho đơn thức B)

b. Ví dụ minh họa: 

Tìm số tự nhiên n để đa thức A chia hết cho đơn thức B:

a, A = 14x8y4 - 9x2ny6 và B = -2x7yn

Ta có: A : B = (14x8y4 - 9x2ny6) : -2x7yn  

= (14x8y:-2x7yn) - (9x2ny: -2x7yn

Phương pháp chia đơn thức, đa thức cho đơn thức

Để A chia hết cho B thì:  

Phương pháp chia đơn thức, đa thức cho đơn thức   

Phương pháp chia đơn thức, đa thức cho đơn thức

=> n = 4 (vì n ∈ N )

b, A = 4x9y2n + 9x8y5 và B = 3x3ny4 

Ta có: A : B = (4x9y2n + 9x8y5) : 3x3ny4 

= (4x9y2n : 3x3ny4) + (9x8y: 3x3ny4

Phương pháp chia đơn thức, đa thức cho đơn thức

Để A chia hết cho B thì:  

Phương pháp chia đơn thức, đa thức cho đơn thức   

Phương pháp chia đơn thức, đa thức cho đơn thức 

=> n = 2 (vì n ∈ N )

c, A = -8y12z10 - 21y20z2n - 1 và B = -6y2nz9 

Ta có: A : B = (-8y12z10 - 21y20z2n - 1) : -6y2nz9 

= (-8y12z10 : -6y2nz9) - (21y20z2n - 1 : -6y2nz9

= Phương pháp chia đơn thức, đa thức cho đơn thức 

Để A chia hết cho B thì: 

Phương pháp chia đơn thức, đa thức cho đơn thức   

=> 5 ≤ n ≤ 6 

=> n ∈ (vì n ∈ N )

                          Phương pháp chia đơn thức, đa thức cho đơn thức

C. Bài tập tự luyện: 

Bài 1: Làm phép tính chia:

a) (-18)4 : 94          

Phương pháp chia đơn thức, đa thức cho đơn thức

Lời giải

a) 16                                      

Phương pháp chia đơn thức, đa thức cho đơn thức

Bài 2:  Làm phép tính chia:

a) x5 : x3 .                                          

b) 18x7 : 6x4

c) 8x6y7z2 : 4x4y7                                   

d) 65x9y5 : (-13x4y4)

Phương pháp chia đơn thức, đa thức cho đơn thức                               

f) (5 - x)5 : (x - 5)4

Lời giải

a) x5 : x3 = x2                                                             

b) 18x7 : 6x= 3x3

c) 8x6y7z2 : 4x4y7 = 2x2z2                                          

d) 65x9y5 : (-13x4y4) = -5x5y

Phương pháp chia đơn thức, đa thức cho đơn thức                                   

f) (5 - x)5 : (x - 5)= 5 - x

Bài 3:  Tính giá trị biểu thức:

a) A = 15x5y3 : 10xytại x = -3 và Phương pháp chia đơn thức, đa thức cho đơn thức 

b) B = (-x3y5z3) : (-x2y3z2) tại x = 1, y = -1 và z = 100 

Phương pháp chia đơn thức, đa thức cho đơn thức

d) D = (x - y + z)5 : (-x - y + z)3  tại x = 17, y = 16 và z = 1 

Lời giải

Phương pháp chia đơn thức, đa thức cho đơn thức

b) B = xy2z. Thay x = 1, y = -1 và z = 100 vào B ta được B = 100.

Phương pháp chia đơn thức, đa thức cho đơn thức

d) D = -(x - y + z)2, thay x = 17, y = 16 và z = 1 tính được D = -4 

Bài 4: 

a)Cho A = 18x10yn và B = -6x7y3. Tìm điều kiện của n để biểu thức A chia hết cho biểu thức B. 

b) Cho A = -12x8y2nzn - 1 và B = 2x4ynz. Tìm điều kiện của n để biểu thức A chia hết cho biểu thức B. 

Lời giải :  

Phương pháp chia đơn thức, đa thức cho đơn thức

Bài 5: Tìm các giá trị nguyên của n để hai biểu thức A và biểu thức B đồng thời chia hết cho biểu thức C biết:

a) A = x6y2n - 6, B = 2x3ny18-2n và C = x2y4 

b) A = 20xny2n+3z2, B = 21x6y3-nt và C = 22xn-1y2 

Lời giải

Phương pháp chia đơn thức, đa thức cho đơn thức     

Phương pháp chia đơn thức, đa thức cho đơn thức 

=> n ∈

Phương pháp chia đơn thức, đa thức cho đơn thức 

 Phương pháp chia đơn thức, đa thức cho đơn thức

=> n ∈  

Bài 6 : Ghép mỗi ý ở cột A với một ý ở cột B để có kết quả đúng.

A

B

a) 15xy2 

1) 5x2y2

b) 20x3y2 : 4xy2

2) 3y 

c) 40x3y3 : 8xy 

3) 5x2 

4) x2 

Lời giải

a – 2, b – 3, c – 1

Bài 7: Làm phép tính chia:

a) (6.84 - 5.8+ 82) : 82                  

b) (5.92 + 35 - 2.33) : 32

c) (2.34 + 32 - 7.33) : 32.                      

d) (6.23 - 5.24 + 25) : 23

Lời giải

a) 6.82 - 5.8 + 1 = 345  

b) (5.92 + 35 - 2.33) : 3= 66

c) (2.34 + 32 - 7.33) : 32 = 2.32 + 1 - 7.3 = -2

d) (6.23 - 5.24 + 25) : 2= 6 - 5.2 + 22 = 0

Bài 8:  Làm phép tính chia: 

a) (x3 + 12x2 - 5x) : x.                                 

b) (3x4y3 - 9x2y2 + 25xy3) : xy2.        

Phương pháp chia đơn thức, đa thức cho đơn thức

e) (8x3 - 27y3) : (2x - 3y).                           

f) [5(x + 2y)6 - 6(x + 2y)5] : 2(x + 2y)4 .

Lời giải

a) (x3 + 12x2 - 5x) : x  

= x2 + 12 - 5 

b) (3x4y3 - 9x2y2 + 25xy3) : xy2

= 3x3y - 9x + 25y           

Phương pháp chia đơn thức, đa thức cho đơn thức     

 e) (8x3 - 27y3) : (2x - 3y)          

= (2x - 3y)(4x2 + 6xy + 9y2) : (2x - 3y)

= 4x2 + 6xy + 9y2

f) [5(x + 2y)6 - 6(x + 2y)5] : 2(x + 2y)4   

Phương pháp chia đơn thức, đa thức cho đơn thức 

Bài 9:  Tính giá trị biểu thức:  

a) A = (15x5y3 - 10x3y2 + 20x4y4) : 5x2y2 tại x = -1; y = 2

b) B = [(2x2y)2 + 3x4y- 6x3y2] : (xy)tại x = y = -2

Phương pháp chia đơn thức, đa thức cho đơn thức

Lời giải:

a) A = 3x3y - 2x + 4x2y2 .

        Thay x = -1; y = 2 vào biểu thức tính được kết quả A = 12 

        b) B = 4x2 + 3x2y - 6x

       Thay x = y = -2 vào biểu thức tính được kết quả B = 4 .

       Phương pháp chia đơn thức, đa thức cho đơn thức

Phương pháp chia đơn thức, đa thức cho đơn thức 

Bài 10: Tìm số tự nhiên n để đa thức A chia hết cho đơn thức B:

a) A = x2y4 + 2x3y3, B = xny2 .

b) A = 5x8y4 - 9x2ny6, B = -x7y.                        

c) A = 4x9y2n + 10x10y5z2. B = 2x3ny4 .

Lời giải:  

a) A ⋮ B ⇔ 2 ≥ n ⇔ n ≤ 2 mà n ∈ N => n = . 

Phương pháp chia đơn thức, đa thức cho đơn thức

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc, có đáp án hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học