Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Với Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 1: Tứ giác để đạt điểm cao trong các bài thi môn Toán 8.

A. Phương pháp giải

Sử dụng định nghĩa, tính chất của phép đối xứng tâm.

1. Định nghĩa 

a) Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó. 

Quy ước : Điểm đối xứng với O qua điểm O chính là điểm O. 

b) Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua  điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.

2. Các tính chất thừa nhận 

Tính chất 1: Nếu các điểm A và A’, B và B’, C và C’ đối xứng với nhau qua điểm O trong đó C nằm giữa A và B thì C’ nằm giữa A’ và B’.

Tính chất này cho phép ta vẽ hai hình đối xứng với nhau qua một điểm. 

Tính chất 2: Nếu hai đoạn thẳng (góc, tam giác) đối xứng nhau qua một điểm thì chúng bằng nhau.

B. Ví dụ minh họa

Ví dụ 1. Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 32 cm. Chu vi của tam giác ABC là 

Lời giải

Vì tam giác ABC đối xứng với tam giác A’B’C’ qua O nên 

ΔABC= ΔA'B'C' ⇒AB = A’B’; AC = A’C’; BC = B’C’

Nên AB + AC + BC = A’B’ +A’C’ + B’C’ ⇒PABC=PA'B'C' .

Do đó chu vi tam giác ABC là PABC  = 32 cm .

Ví dụ 2. Cho tam giác ABC, trong đó AB = 12cm, BC = 15cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là

Lời giải

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Lấy M là trung điểm AC khi đó A, C đối xứng nhau qua M. Vẽ B’ đối xứng với B qua M.

Khi đó tam giác B’AC đối xứng với tam giác BCA qua M. Tứ giác tạo thành là ABCB’.

Vì tam giác B’AC đối xứng với tam giác BCA qua M nên:

AB’ = BC =15 cm; B’C = AB = 12 cm.

Chu vi tứ giác ABCB’ là AB + BC + CB’ + AB’ = 12 + 15 + 12 + 15 = 54 cm.

Ví dụ 3. Cho tam giác ABC, đường cao AH, trong đó BC = 18 cm, AH = 3cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là

Lời giải

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Gọi tam giác A’CB đối xứng với tam giác ABC qua trung điểm M của cạnh BC. Khi đó  ΔABC= ΔA'BC

Nên  SABC=SA'BC.

Ta có 

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

C. Bài tập vận dụng

Câu 1. Điền từ thích hợp vào chỗ trống: Hai điểm M, N gọi là đối xứng nhau qua điểm I nếu…

A. I là trung điểm của đoạn MN.

B. I là điểm nằm ngoài đoạn MM.

C. I là điểm cách M một khoảng bằng 1/2 .

D. I là điểm chia đoạn MN thành tỉ số 2:3

Lời giải:

Theo định nghĩa hai điểm đối xứng qua một điểm: Hai điểm M, N gọi là đối xứng với nhau qua điểm I nếu I là trung điểm của đoạn thẳng MN nên A đúng.

Đáp án: A.

Câu 2. Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 40 cm. Chu vi của tam giác ABC là:

A. 32 dm. 

B. 40 cm.

C. 20 dm. 

D. 80 dm.

Lời giải:

Vì tam giác ABC đối xứng với tam giác A’B’C’ qua O nên 

ΔABC= ΔA'B'C' ⇒ AB = A’B’; AC = A’C’; BC = B’C’

Nên AB + AC + BC = A’B’ + A’C’ + B’C’ ⇒PABC=PA'B'C' 

Do đó chu vi tam giác ABC là  PABC = 40 cm .

Đáp án: B.

Câu 3. Cho tam giác ABC, trong đó AB = 8cm, BC = 11cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là:

A. 19cm. 

B. 38cm.

C. 76cm. 

D. 40cm.

Lời giải:

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Lấy M là trung điểm AC khi đó A, C đối xứng nhau qua M. Vẽ B’ đối xứng với B qua M. Khi đó tam giác B’AC đối xứng với tam giác BCA qua M. Tứ giác tạo thành là ABCB’. Vì tam giác B’AC đối xứng với tam giác BCA qua M nên 

AB’ = BC =11cm; B’C = BA = 8cm

Chu vi tứ giác ABCB’ là AB + BC + CB’ + AB’ = 8 + 11 + 11 + 8 = 38cm

Đáp án: B.

Câu 4. Cho tam giác ABC, đường cao AH, trong đó BC = 30 cm, AH = 18 cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là:

A. 270 cm2  

B. 540 cm

C. 280 cm2  

D. 360 cm2

Lời giải:

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Gọi tam giác A’CB đối xứng với tam giác ABC qua trung điểm M của cạnh BC. Khi đó ΔABC= ΔA'BC

Nên  SABC=SA'BC.

Ta có 

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Đáp án: A.

Câu 5. Cho tam giác ABC có D, E lần lượt là trung điểm của các cạnh AB và AC. Gọi O là một điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vẽ điểm N đối xứng với O qua E. Tứ giác MNCB là hình gì?

A. Hình bình hành

B. Hình thang cân

C. Hình thang vuông

D. Cả A, B, C đều sai

Lời giải:

Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Từ giả thiết ta có D là trung điểm của AB và MO, E là trung điểm của AC, ON nên DE là đường trung bình của cả hai tam giác ABC và OMN. 

Áp dụng định lí đường trung bình vào hai tam giác trên, ta được: 

 Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành.

Đáp án: A

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học