Lý thuyết Hình chữ nhật lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Hình chữ nhật lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hình chữ nhật.

Lý thuyết Hình chữ nhật

Bài giảng: Bài 9: Hình chữ nhật - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

1. Định nghĩa

Hình chữ nhật là tứ giác có bốn góc vuông. Hình chữ nhật cũng là một hình bình hành và cũng là hình thang cân

Lý thuyết Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Tổng quát: ABCD là hình chữ nhật ⇔ Aˆ = Bˆ = Cˆ = Dˆ = 900

2. Tính chất

Hình chữ nhật là có tất cả các tính chất của hình bình hành và hình thang cân.

Định lí: Trong hình chữ nhật, hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường

3. Dấu hiệu nhận biết hình chữ nhật

+ Tứ giác có ba góc vuông là hình chữ nhật.

+ Hình thang cân có một góc vuông là hình chữ nhật.

+ Hình bình hành có một góc vuông là hình chữ nhật.

+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

4. Áp dụng vào tam giác

+ Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

+ Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

Ví dụ: Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Chứng minh tứ giác AHCE là hình chữ nhật.

Lời giải:

Lý thuyết Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

+ Trong Δ AHC vuông có I là trung điểm của AC

⇒ HE là đường trung tuyến của Δ AHC.

⇒ HI = 1/2AC = AI = IC.

Mà E đối xứng với H qua I ⇒ HI = IE.

Khi đó ta có HI = IE = AI = IC.

+ Xét Δ HCE có CI là đường trung tuyến ứng với cạnh HE

mà CI = 1/2HE ⇒ Δ HCE vuông tại C.

Tương tự xét với Δ AHE,Δ AEC đều là các tam giác vuông tại A, E.

Xét tứ giác AHCE có EAHˆ = AHCˆ = HCEˆ = CEAˆ = 900

⇒ AHCE là hình chữ nhật.

Bài 1: Tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Giải thích ?

Lời giải:

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Tứ giác EFGH là hình chữ nhật.

Giải thích: Theo giả thiết ta có EF, GH lần lượt là đường trung bình của tam giác Δ ABC,Δ ADC

Áp dụng định lí đường trung bình vào hai tam giác ta được

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Chứng minh tương tự: EH//FG//BD      ( 2 )

Từ ( 1 ) và ( 2 ), tứ giác EFGH có hai cặp cạnh đối song song nên tứ giác EFGH là hình bình hành.

Gọi O là giao điểm của AC và BD, I là giao điểm của EF với BD.

Áp dụng tính chất của các góc đồng vị vào các đường thẳng song song ở trên và giả thiết nên ta có:

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Hình bình hành EFGH có một góc vuông nên EFGH là hình chữ nhật.

Bài 2: Tìm giá trị của x từ các thông tin trên hình sau ?

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Lời giải:

Kẻ BH ⊥ CD, tứ giác ABHD có Aˆ = ABHˆ = BHDˆ = 900

⇒ Tứ giác ABHD là hình chữ nhật.

Áp dụng tính chất của hình chữ nhật ta có:Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có: CD = DH + HC ⇒ HC = CD - DH = 15 - 10 = 5( cm )

+ Xét Δ BCH, áp dụng định lý Py – ta – go ta có:

BC2 = HC2 + BH2 ⇒ BH2 = BC2 - HC2

⇒ BH = √ (BC2 - HC2) = √ (132 - 52) = 12( cm )

Do đó BH = AD = x = 12( cm ). Vậy x = 12

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học