Lý thuyết Hình thoi lớp 8 (hay, chi tiết)
Bài viết Lý thuyết Hình thoi lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Hình thoi.
Lý thuyết Hình thoi lớp 8 (hay, chi tiết)
Lý thuyết Hình thoi
Bài giảng: Bài 11: Hình thoi - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
1. Định nghĩa
Hình thoi là tứ giác có bốn cạnh bằng nhau.
Hình thoi cũng là một hình bình hành.
Tổng quát: ABCD là hình thoi \Leftrightarrow AB = BC = CD = DA
2. Tính chất
Hình thoi có tất cả các tính chất của hình bình hành.
Định lí: Trong hình thoi:
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác các góc của hình thoi.
3. Dấu hiệu nhận biết hình thoi
+ Tứ giác có bốn cạnh bằng nhau là hình thoi.
+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi
+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
Ví dụ: Cho hình chữ nhật ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD. Chứng minh tứ giác MNPQ là hình thoi.
Lời giải:
M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD
⇒ AM = MB; BN = NC; CP = DP; AQ = DQ
+ Xét Δ ABD có
⇒ MQ là đường trung bình của Δ ABD.
⇒ QM = 1/2BD = 1/2AC ( 1 )
+ Xét Δ ABC có
⇒ MN là đường trung bình của Δ ABC.
⇒ MN = 1/2BD = 1/2AC ( 2 )
+ Xét Δ BCD có
⇒ NP là đường trung bình của Δ BCD.
⇒ NP = 1/2BD = 1/2AC ( 3 )
+ Xét Δ ADC có
⇒ QP là đường trung bình của Δ ADC.
⇒ QP = 1/2BD = 1/2AC ( 4 )
Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.
⇒ MNPQ là hình thoi.
Bài 1: Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đội cạnh đó. Tính các góc của hình thoi.
Lời giải:
Gọi H là chân đường cao kẻ từ đỉnh A xuống cạnh CD, theo giả thiết ta có:
⇒ AH là đường trung trực của đoạn CD nên AC = AD ( 1 )
Áp dụng định nghĩa của hình thoi ABCD, ta có
AD = AB = BC = CD ( 2 )
Từ ( 1 ) và ( 2 ) ta có AD = AC = CD ⇒ Δ ACD là tam giác đều
⇒ ADCˆ = 600.
Vì góc A và góc D là hai góc trong cùng phía của AB//CD nên chúng bù nha.
Hay Aˆ + Dˆ = 1800 ⇒ Aˆ = 1800 - Dˆ = 1800 - 600 = 1200.
Áp dụng tính chất về góc của hình thoi ta có:
Bài 2: Chứng minh rằng các đường cao của hình thoi bằng nhau.
Lời giải:
Xét hình thoi ABCD, kẻ hai đường cao
AH ⊥ BC, AK ⊥ CD.
Ta cần chứng minh: AH = AK.
Áp dụng định nghĩa, tính chất về góc và giả thiết của hình thoi ABCD, ta có:
⇒ Δ ABH = Δ ADH ( g - c - g )
⇒ AH = AK (cặp cạnh tương ứng bằng nhau)
→ (đpcm)
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Hình thoi
- Lý thuyết Hình vuông
- Bài tập Hình vuông
- Tổng hợp Lý thuyết & Trắc nghiệm Chương 1 Hình học 8
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều