15 Bài tập Hình thoi lớp 8 (có đáp án)
Bài viết 15 Bài tập Hình thoi có đáp án gồm các dạng bài tập về Hình thoi lớp 8 từ cơ bản đến nâng cao giúp học sinh lớp 8 biết cách làm bài tập Hình thoi.
Bài 1: Khoanh tròn vào phương án đúng trong các phương án sau ?
A. Hình thoi là tứ giác có bốn góc bằng nhau.
B. Hình thoi là tứ giác có hai cạnh đối bằng nhau.
C. Hình thoi là tứ giác có ba góc vuông.
D. Hình thoi là tứ giác có bốn cạnh bằng nhau.
Lời giải:
Định nghĩa: Hình thoi là tứ giác có bốn cạnh bằng nhau.
Chọn đáp án D.
Bài 2: Trong các khẳng định sau, khẳng định nào sai về hình thoi ?
A. Hai đường chéo bằng nhau.
B. Hai đường chéo vông góc và là các đường phân giác của các góc hình thoi.
C. Hai đường chéo cắt nhau tại trung điểm mỗi đường.
D. Hình thoi có 4 cạnh bằng nhau.
Lời giải:
Định lí: Trong hình thoi:
+ Hai đường chéo vuông góc với nhau.
+ Hai đường chéo là các đường phân giác các góc của hình thoi.
+ Hai đường chéo cắt nhau tại trung điểm mỗi đường.
⇒ Đáp án A sai.
Chọn đáp án A.
Bài 3: Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Độ dài cạnh của hình thoi đó là ?
A. 6cm. B. √ 41 cm.
C. √ 164 cm. D. 9cm.
Lời giải:
Độ dài đường chéo của hình thoi lần lượt là
→ Độ dài đường chéo của hình thoi là:
Chọn đáp án B.
Bài 4: Hình thoi có độ dài các cạnh là thì chu vi của hình thoi là ?
A. 8cm. B. 44cm.
C. 16cm. D. Cả A, B, C đều sai.
Lời giải:
Chu vi của hình thoi là Pht = 4 + 4 + 4 + 4 = 16( cm ).
Chọn đáp án C.
Bài 5: Các phương án sau, phương án nào sai?
A. Các trung điểm của bốn cạnh hình chữ nhật là các đỉnh của một hình thoi.
B. Các trung điểm của bốn cạnh hình thoi là bốn đỉnh của hình chữ nhật.
C. Giao điểm của hai đường chéo của hình thoi là tâm đối xứng của hình thoi đó.
D. Hình thoi của bốn trục đối xứng.
Lời giải:
Định lí:
+ Hình thoi có hai trục đối xứng là hai đường chéo của hình thoi.
+ Có một tâm đối xứng là giao điểm của hai đường chéo.
Mở rộng:
+ Trong hình chữ nhật, các trung điểm của các cạnh hình chữ nhật là các đỉnh của một hình thoi.
+ Trong hình thoi, các trung điểm của bốn cạnh hình thoi là các hình chữ nhật.
→ Đáp án D sai.
Chọn đáp án D.
Bài 6: Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
A. Tứ giác ABCD là hình thoi
B. AI = BC
C. AB = BC
D. CD = 5
Lời giải:
Theo tính chất hình bình hành ta có: I là trung điểm của AC và BD.
Suy ra:
Xét tam giác AID có: AI2 + ID2 = AD2 (32 + 42 = 52 = 25)
Suy ra: tam giác AID là tam giác vuông: AI ⊥ DI hay AC ⊥ BD
Hình bình hành ABCD có 2 đường chéo AC và BD vuông góc với nhau nên là hình thoi.
Suy ra: AB = BC = CD = DA = 5cm
Chọn đáp án B
Bài 7: Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD?
A. 6cm B. 8cm
C. 7cm D.10cm
Lời giải:
Do ABCD là hình thoi nên: AO = OC = 1/2 AC = 8cm
Áp dụng định lí Pytago vào tam giác vuông ABO ta có:
AB2 = AO2 + OB2 = 82 + 62 = 100 nên AB = 10cm
Vì ABCD là hình thoi nên AB = CD = 10cm
Chọn đáp án D
Bài 8: Cho tam giác ABC , gọi M, N và P lần lượt là trung điểm của AC; AB và BC. biết AB = BC. Hỏi tứ giác NMPB là hình gì?
A. Hình thoi
B. Hình bình hành
C. Hình chữ nhật
D. Hình thang
Lời giải:
* Xét tam giác ABC có M và N lần lượt là trung điểm của AC và AB nên MN là đường trung bình của tam giác ABC.
Suy ra: MN// BC và
* Lại có: P là trung điểm của BC nên
Từ (1) và (2) suy ra: MN = BP.
Tứ giác NMPB có 2 cạnh đối MN và BP song song và bằng nhau nên là hình bình hành.
* Lại có: N là trung điểm của AB nên
Theo giả thiết AB = BC nên từ (1) và (2) suy ra: BP = BN
Hình bình hành NMPB có 2 cạnh kề BP và BN bằng nhau nên là hình thoi.
Chọn đáp án A
Bài 9: Cho tam giác ABC cân tại A có AM là đường trung tuyến. Điểm D đối xứng với điểm A qua M. Hỏi tứ giác ABDC là hình gì?
A. Hình bình hành
B. Hình chữ nhật
C. Hình thoi
D. Hình thang cân
Lời giải:
Do tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao:
AM ⊥ BC và M là trung điểm của BC.
Do D đối xứng vơi A qua M nên M là trung điểm của AD.
Tứ giác ABDC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành.
Lại có: AD ⊥ BC nên tứ giác ABDC là hình thoi.
Chọn đáp án C
Bài 10: Cho hình thoi ABCD có CD = 4cm và ∠ABD = 30o. Tính AC
A. 3cm B. 2cm
C. 6cm D. 4cm
Lời giải:
Do ABCD là hình thoi nên BD là đường phân giác của góc ∠ABC
Suy ra: ∠ABC = 2∠ABD = 60o
Xét tam giác ABC có AB = BC ( vì ABCD là hình thoi) và ∠ABC = 60o
Suy ra: tam giác ABC là tam giác đều.
Vì ABCD là hình thoi nên AB = BC = CD = DA =4cm
Suy ra : AC = AB = BC = 4cm.
Chọn đáp án D
Bài 11: Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu đúng.
A. MP = QN
B. AC ⊥ BD
C. AB = AD
D. AC = BD
Lời giải
+ Xét tam giác ABC có MN là đường trung bình nên MN // AC; MN = AC (1)
Tương tự ta có PQ là đường trung bình tam giác ADC nên PQ // AC; PQ = AC (2)
Từ (1) và (2) suy ra MN // PQ; MN = PQ ⇒ MNPQ là hình bình hành
Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ
Mà MN = AC (cmt); MQ = BD (do MQ là đường trung bình tam giác ABD)
Suy ra AC = BD
Vậy để hình bình hành MNPQ là hình thoi thì AC = BD
Đáp án cần chọn là: D
Bài 12: Cho hình bình hành ABCD. Gọi E, F là trung điểm của các cạnh AD và BC. Các đường BE, DE cắt các đường chéo AC tại P và Q. Tứ giác EPFQ là hình thoi nếu góc ACD bằng:
A. 450
B. 900
C. 600
D. 750
Lời giải
Gọi O là giao điểm của hai đường chéo AC và BD
Vì ABCD là hình bình hành nên O là trung điểm của AC, BD.
Xét tứ giác EDFB có nên EDFB là hình bình hành suy ra
Xét tam giác ABD có P là giao điểm hai đường trung tuyến nên P là trọng tâm ΔABD ⇒ EP = BE
Xét tam giác CBD có Q là giao điểm hai đường trung tuyến nên Q là trọng tâm ΔCBD ⇒ QF = DF
Mà BE = DF (cmt) ⇒ EP = QF
Xét tứ giác EPFQ có ⇒ EPQF là hình bình hành
Để hình bình hành EPFQ là hình thoi thì EF ⊥ PQ.
Mà EF // CD (do E là trung điểm AD, F là trung điểm BC)
Nên PQ ⊥ CD hay AC ⊥ CD ⇒ = 900.
Đáp án cần chọn là: B
Bài 13: Cho hình thoi có độ dài hai đường chéo là 24cm và 10cm. Tính độ dài cạnh hình thoi.
A. 12cm
B. 13cm
C. 14cm
D. 15cm
Lời giải
Giả sử ABCD là hình thoi có hai đường chéo cắt nhau tại H và AC =10cm, BD = 24cm
Do ABCD là hình thoi nên:
Xét tam giác AHB vuông tại H ta có:
AB2 = AH2 + HB2 = 52 + 122 = 25 + 144 = 169
Suy ra AB = 13cm
Đáp án cần chọn là: B
Bài 14: Cho hình thoi có độ dài hai đường chéo là 12cm và 16cm. Tính độ dài cạnh hình thoi.
A. 12cm
B. 8cm
C. 20cm
D. 10cm
Lời giải
Giả sử ABCD là hình thoi có hai đường chéo cắt nhau tại H và AC =12cm, BD = 16cm
Do ABCD là hình thoi nên:
Xét tam giác AHB vuông tại H ta có:
AB2 = AH2 + HB2 = 62 + 82 = 36 + 64 = 100
Suy ra AB = 10cm
Đáp án cần chọn là: D
Bài 15: Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D.
1. Tứ giác AMBM’ là hình gì?
A. Hình thoi
B. Hình chữ nhật
C. Hình bình hành
D. Hình thang
Lời giải
Vì M’ đối xứng M qua D nên DM = DM’ (1)
M, D lần lượt là trung điểm của BC, AB nên MD là đường trung bình của ΔABC.
Suy ra MD // AC (2)
Mặt khác ΔABC vuông ở A nên AB ⊥ AC (2)
Từ (1) và (2) suy ra DM ⊥ AB ⇒ MM’ ⊥ AB.
Vì D là trung điểm của AB (gt) và D là trung điểm của MM’ nên tứ giác AMBM’ là hình bình hành. Mặt khác MM’ ⊥ AB nên AMBM’ là hình thoi.
Đáp án cần chọn là: A
2. Cho BC = 4cm. Tính chu vi tứ giác AMBM’.
A. 6cm
B. 9cm
C. 16cm
D. 8cm
Lời giải
Vì BC = 4cm nên BM = = 2cm
Chu vi tứ giác AMBM’ bằng 4.BM = 4.2 = 8cm
Đáp án cần chọn là: D
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Lý thuyết Hình thoi
- Lý thuyết Hình vuông
- Bài tập Hình vuông
- Tổng hợp Lý thuyết & Trắc nghiệm Chương 1 Hình học 8
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều