Lý thuyết Phương trình đưa được về dạng ax + b = 0 lớp 8 (hay, chi tiết)
Bài viết Lý thuyết Phương trình đưa được về dạng ax + b = 0 lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Phương trình đưa được về dạng ax + b = 0.
Bài giảng: Bài 3: Phương trình đưa được về dạng ax + b = 0 - Cô Vương Thị Hạnh (Giáo viên VietJack)
1. Cách giải
Để giải các phương trình đưa được về ax + b = 0 ta thường biến đổi phương trình như sau:
Bước 1: Quy đồng mẫu hai vế và khử mẫu (nếu có)
Bước 2: Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax = c.
Bước 3: Tìm x
Chú ý: Quá trình biến đổi phương trình về dạng ax = c có thể dẫn đến trường hợp đặc biệt là hệ số của ẩn bằng 0 nếu:
0x = c thì phương trình vô nghiệm
0x = 0 thì phương trình nghiệm đúng với mọi x hay vô số nghiệm S = R.
Ví dụ 1: Giải phương trình 2x - ( 3 - 2x ) = 3x + 1
Lời giải:
Ta có 2x - ( 3 - 2x ) = 3x + 1 ⇔ 2x - 3 + 2x = 3x + 1
⇔ 4x - 3x = 1 + 3 ⇔ x = 4.
Vậy phương trình đã cho có tập nghiệm là S = { 4 }.
Ví dụ 2: Giải phương trình
Lời giải:
Ta có:
⇔ 2x - 1 = x - 2 ⇔ x = - 1.
Vậy phương trình đã cho có tập nghiệm là S = { - 1 }.
Ví dụ 3: Giải phương trình
Lời giải:
Ta có:
⇔ ( x - 2 )17/60 = 0 ⇔ x - 2 = 0 ⇔ x = 2.
Vậy phương trình có tập nghiệm là S = { 2 }.
Ví dụ 4: Giải phương trình x + 1 = x - 1.
Lời giải:
Ta có x + 1 = x - 1 ⇔ x - x = - 1 - 1 ⇔ 0x = - 2.
Vậy phương trình đã cho vô nghiệm.
Ví dụ 5: Giải phương trình x - 3 = x - 3.
Lời giải:
Ta có: x - 3 = x - 3 ⇔ x - x = - 3 + 3 ⇔ 0x = 0.
Vậy phương trình đã cho vô số nghiệm.
Bài 1: Giải các phương trình sau:
a) 5( x - 3 ) - 4 = 2( x - 1 ) + 7
b)
c)
Lời giải:
a) Ta có: 5( x - 3 ) - 4 = 2( x - 1 ) + 7
⇔ 5x - 15 - 4 = 2x - 2 + 7
⇔ 5x - 2x = 15 + 4 - 2 + 7
⇔ 3x = 24 ⇔ x = 8
Vậy phương trình đã cho có nghiệm là x = 8.
b) Ta có:
⇔ 8x - 3 - 6x + 4 = 4x - 2 + x + 3
⇔ 2x + 1 = 5x + 1
⇔ 2x - 5x = 1 - 1
⇔ -3x = 0 ⇔ x = 0
Vậy phương trình đã cho có nghiệm là x = 0.
c) Ta có:
⇔ 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66
⇔ 0x = 0
⇒ Phương trình đã cho vô số nghiệm.
Vậy phương trình đã cho vô số nghiệm.
Bài 2: Giải các phương trình sau
a)
b)
Lời giải:
a) Ta có:
⇒ x - 2014 = 0 ⇔ x = 2014.
Vậy phương trình đã cho có nghiệm là x = 2014.
b) Ta có:
⇒ x - 100 = 0 ⇔ x = 100.
Vậy phương trình đã cho có nghiệm là x = 100.
Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:
- Bài tập Phương trình đưa được về dạng ax + b = 0
- Lý thuyết Phương trình tích
- Bài tập Phương trình tích
- Lý thuyết Phương trình chứa ẩn ở mẫu
- Bài tập Phương trình chứa ẩn ở mẫu
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều