Lý thuyết Diện tích tam giác lớp 8 (hay, chi tiết)

Bài viết Lý thuyết Diện tích tam giác lớp 8 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Diện tích tam giác.

Lý thuyết Diện tích tam giác lớp 8 (hay, chi tiết)

Bài giảng: Bài 3: Diện tích tam giác - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)

1. Định lý

Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

Lý thuyết Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có: S = 1/2b.h.

Ví dụ: Cho tam giác Δ ABC có độ dài đường cao h = 4 cm, đáy BC = 5 cm. Tính diện tích Δ ABC ?

Lời giải:

Diện tích của tam giác Δ ABC là SABC = 1/2BC.h = 1/24.5 = 10 ( cm2 ).

2. Hệ quả

Nếu Δ ABC vuông (áp dụng với hình bên trên) thì diện tích của tam giác bằng một nửa của tích hai cạnh góc vuông.

Tổng quát : S = 1/2a.c (áp dụng với kí hiệu ở hình trên).

Ví dụ: Cho Δ ABC vuông tại A có cạnh AB = 3 cm;AC = 4 cm. Tính diện tích của tam giác Δ ABC ?

Lời giải:

Diện tích của tam giác ABC là SABC = 1/2AB.AC = 1/2.3.4 = 6( cm2 )

Bài 1: Tính diện tích của một tam giác cân có cạnh đáy là a, cạnh bên bằng b. Từ đó hãy tính diện tích của một tam giác đều có cạnh bằng a.

Lời giải:

Bài tập Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có AB = AC = b, BC = a.

Từ A kẻ AH ⊥ BC.

Ta có BH = HC = 1/2BC = a/2

Khi đó ta có: SABC = 1/2AH.BC = 1/2.a.AH

Áp dụng định lý Py – to – go ta có:

AC2 = AH2 + HC2 ⇒ AH = √ (AC2 - HC2) .

Bài tập Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó SABC = 1/2AH.BCBài tập Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó diện tích của tam giác đều các cạnh bằng a làBài tập Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Bài 2: Cho Δ ABC cân tại A có BC = 30( cm ), đường cao AH = 20 ( cm ). Tính đường cao ứng với cạnh bên của tam giác cân đó.

Lời giải:

Bài tập Diện tích tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC cân tại A có BC = 30( cm )

⇒ BH = CH = 15( cm ).

Áp dụng đinh lý Py – ta – go ta có:

AB = √ (AH2 + HB2) = √ (202 + 152) = 25( cm )

Kẻ BK ⊥ AC, giờ ta phải tính BK = ?

Ta có : SABC = 1/2AH.BC = 1/2.20.30 = 300 ( cm2 )

Mặt khác SABC = 1/2BK.AC = 1/2.BK.25

Do đó, ta có 1/2BK.25 = 300 ⇔ BK = (2.300)/25 = 24( cm ).

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 8 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


Giải bài tập lớp 8 sách mới các môn học