Lý thuyết Lũy thừa của một số hữu tỉ lớp 7 (hay, chi tiết)

Bài viết Lý thuyết Lũy thừa của một số hữu tỉ lớp 7 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lũy thừa của một số hữu tỉ.

Bài giảng: Bài 5: Lũy thừa của một số hữu tỉ - Cô Vũ Xoan (Giáo viên VietJack)

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của một số hữu tỷ x, kí hiệu là xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Với x ∈ Q, n ∈ N, n > 1 ta có:

Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x; x gọi là cơ số, n gọi là số mũ.

   + Nếu Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án thì Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

   + x0 = 1 (với x ≠ 0)

   + x1 = (với x ≠ 0)

Chú ý:

   + 1n = 1,0n = 0 (n ≠ 0)

   + Lũy thừa bậc chẵn của một số âm là một số dương.

   + Lũy thừa bậc lẻ của một số âm là một số âm.

   + Nếu Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án thì Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

Ví dụ:

   + Tính: Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

   + Tính: (-3,5)2 = (-3,5). (-3,5) = 12,25

2. Tích và thương của hai lũy thừa cùng cơ số

Với số tự nhiên a, ta đã biết:

am. an = am+n

am:an = am-n (a ≠ 0, m ≥ n)

Cũng như vậy, đối với số hữu tỉ x, ta có các công thức:

xm. xn = xm+n

(Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ)

xm:xn = xm-n (x ≠ 0, m ≥ n)

(Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi mũ của lũy thừa chia)

Ví dụ:

   + Tính Toán lớp 7 | Lý thuyết - Bài tập Toán 7 có đáp án

   + Tính: (3,2)2. (3,2)2 = (3,2)(2+2) = (3,2)4

3. Lũy thừa của lũy thừa

Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ

Ta có công thức: (xm)n = x(m.n)

Ví dụ:

   + Tính: (42)3 = 42.3 = 46 = 4096.

   + Tính: (24)4 = 24.4 = 216.

Bài 1: Tính giá trị của biểu thức

Trắc nghiệm Lũy thừa của một số hữu tỉ - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Lời giải:

Trắc nghiệm Lũy thừa của một số hữu tỉ - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Bài 2: Tìm tất cả các số tự nhiên n sao cho: 2.32 ≥ 2n > 8

Lời giải:

Trắc nghiệm Lũy thừa của một số hữu tỉ - Bài tập Toán lớp 7 chọn lọc có đáp án, lời giải chi tiết

Bài 1. Đưa các biểu thức sau về dạng lũy thừa của một số hữu tỉ:

a) 24.83;

b) 1253 : 25;

c) 224 : 43;

Hướng dẫn giải:

a) 24.83 = 24.(23)3 = 24.29 = 24+9 = 213.

b) 1253 : 25 = (53)3 : 52 = 59 : 52 = 59 2 = 57.

c) 224 : 43 = 224 : (22)3 = 224 : 26 = 224 6 = 218

Bài 2. Đưa các biểu thức sau về dạng lũy thừa của một số hữu tỉ:

a) 32.27493 ;

b) 23.8345 ;

c) 34.3533 ;

d) 1252:25254 .

Hướng dẫn giải:

a) 32.27493=32.(33)4(32)3=32.31236=31436=314-6=38.

b) 23.8345=23.(23)3(22)5=23.29210=212210=22

c) 34.3533=3933=39-3=36 ;

d) 1252:25254=(53)2 : (52)254=56-5454=5254=5-2.

Bài 3. So sánh:

a) 1020 và 910;

b) (116)10 và (12)50 ;

c) (−5)30 và (−3)50.

Hướng dẫn giải:

a) 1020 và 910

Ta có 10 > 9, 20 > 10

Suy ra 1020 > 910.

b) (116)10 và (12)50

Ta có: (116)10=(124)10=124.10=1240; (12)50=1250 ;

250 > 240 nên suy ra .

Hay (116)10>(12)50.

c) (−5)30 và (−3)50

Ta có: (−5)30 = (−53)10 = (−125)10 = 12510, (−3)50 = (−35)10 = (−243)10 = 24310

125 < 243 nên 12510 < 24310 ⇒ (−5)30 < (−3)50.

Bài 4. Viết các số sau dưới dạng lũy thừa với số mũ lớn hơn 1: 0,49; 132;-8125; 1681; 121169.

Hướng dẫn giải:

Ta có:

0,49 = 0,7.0,7 = (0,7)2

132=12.2.2.2.2=125

-8125=-2.2.25.5.5=(-25)3

1681=2.2.2.23.3.3.3=(23)4

121169=11.1113.13=(1113)2

Bài 5. Tính: (-12)5; (-23)4;(-214)3; (0,3)5; (-25,7)0

Hướng dẫn giải:

(-12)5=(-12).(-12).(-12).(-12).(-12)=-132 ;

(-23)4=(-23).(-23).(-23).(-23)=1681;

(-214)3=(-94)3=(-94).(-94).(-94).(-94)=-72964 ;

• (−0,3)5 = (−0,3). (−0,3). (−0,3). (−0,3). (−0,3) = −0,00243;

• (−25,7)0 = 1.

Bài 6. Tìm x, biết:

a) x : (-12)3=-12;

b) x.(35)7=(35)9 ;

c) (-23)11 : x = (-23)9 ;

d) x . (0,25)6 = (1/4)8.

Bài 7. Tính giá trị của:

a) M = 1002 – 992 + 982 – 972 + … + 22 – 12;

b) N = (202 + 182 + 162 + … + 42 + 22) – (192 + 172 + 152 + … + 32 + 12);

c) P = (−1)n . (−1)2n + 1 . (−1)n + 1.

Bài 8. Tìm x, biết rằng:

a) (x – 1)3 = 27;

b) x2 + x = 0;

c) (2x + 1)2 = 25;

d) (2x – 3)2 = 36.

Bài 9. Tìm số nguyên dương n, biết rằng:

a) 32 < 2n < 128;

b) 2.16 ≥ 2n > 4;

c) 9.27 ≤ 3n ≤ 243.

Bài 10. So sánh:

a) 9920 và 9 99910;

b) 321 và 231;

c) 230 + 330 + 430 và 3.2410.

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 7 có đáp án chi tiết hay khác:

Lời giải bài tập lớp 7 sách mới:


Giải bài tập lớp 7 sách mới các môn học