Lý thuyết Dấu hiệu chia hết cho 3, cho 9 lớp 6 (hay, chi tiết)

Bài viết Lý thuyết Dấu hiệu chia hết cho 3, cho 9 lớp 6 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Dấu hiệu chia hết cho 3, cho 9.

Lý thuyết Dấu hiệu chia hết cho 3, cho 9 lớp 6 (hay, chi tiết)

1. Nhận xét mở đầu

Nhận xét: Mọi số đều được viết dưới dạng tổng các chữ số của nó cộng với một số chia hết cho 9.

Ví dụ:

Ta có: 378 = 3.100 + 7.10 + 8 = 3.(99 + 1) + 7.(9 + 1) + 8

= 3.99 + 3 + 7.9 + 7 + 8

= (3 + 7 + 8) + (3.11.9 + 7.9)

= (tổng các chữ số) + (số chia hết cho 9)

2. Dấu hiệu chia hết cho 9

Dấu hiệu: Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó chia hết cho 9.

Ví dụ:

   + Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.

   + Số 108 có tổng các chữ số là 1 + 0 + 8 = 9 chia hết cho 9 thì số 108 chia hết cho 9.

3. Dấu hiệu chia hết cho 3

Dấu hiệu: Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó chia hết cho 3.

Ví dụ:

   + Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.

   + Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 3 thì số 321 chia hết cho 3.

Câu 1: Chứng minh rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.

Lời giải:

Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2

Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)

Mọi số tự nhiên khi chia cho 3 có thể nhận số dư là 0, 1, 2.

     + Nếu r = 0 thì n chia hết cho 3 ⇒ n(n + 1)(n + 2) chia hết cho 3.

     + Nếu r = 1 thì n có dạng n = 3k + 1 (k ∈ N)

     ⇒ n + 2 = 3k + 1 + 2 = 3(k + 1) chia hết cho 3.

     ⇒ n(n + 1)(n + 2) chia hết cho 3.

     + Nếu r = 2 thì n có dạng n = 3k + 2 (k ∈ N)

     ⇒ n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.

     ⇒ n(n + 1)(n + 2) chia hết cho 3.

Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.

Câu 2: Cho các số: 3564; 4352; 6531; 6570; 1248.

a) Viết tập hợp A các số chia hết cho 3 trong các số trên.

b) Viết tập hợp B các số chia hết cho 9 trong các số trên.

c) Dùng kí hiệu ⊂ để thể hiện quan hệ giữa hai tập hợp A và B.

Lời giải:

a) Ta có: A = {3564; 6531; 6570; 1248}

b) Ta có: B = {3564; 6570}

c) Ta có B ⊂ A

Xem thêm các phần lý thuyết, các dạng bài tập Toán lớp 6 có đáp án chi tiết hay khác:

Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:


Giải bài tập lớp 6 sách mới các môn học