14 dạng bài Viết phương trình mặt cầu chọn lọc, có lời giải



Với 14 dạng bài Viết phương trình mặt cầu có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm bài Viết phương trình mặt cầu.

Phần Viết phương trình mặt cầu Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Viết phương trình mặt cầu hay nhất tương ứng.

Bài giảng: Cách viết phương trình mặt cầu - dạng bài cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Viết phương trình mặt cầu có tâm I và bán kính R

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.

Lời giải:

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:

(S): (x-2)2+(y-3)2+(z+1)2=25.

Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)

Lời giải:

Gọi I là trung điểm của AB

Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.

⇒ I(3; -1;5)

Bán kính mặt cầu là:

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 3

Vậy phương trình mặt cầu có đường kính AB là:

(x-3)2+(y+1)2+(z-5)2=9

Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2

Bài 3: Viết phương trình mặt cầu có tâm I (3; -2; 2) và đi qua A(-2; 0; -1)

Lời giải:

Vì mặt cầu (S) đi qua A nên (S) có bán kính

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√38

Vậy phương trình mặt cầu có tâm I (3; -2; 2) và bàn kính R=√38 là:

(x-3)2+(y+2)2+(z-2)2=38

Chú ý: Để lập phương trình mặt cầu khi biết tâm I (a; b; c) và đi qua một điểm A cho trước thì ta tìm bán kính R = IA. Khi đó, phương trình mặt cầu (S) có dạng:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Viết phương trình mặt cầu có tâm tiếp xúc mặt phẳng

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên khoảng cách từ tâm I đến mặt phẳng (P) bằng bán kính R

R=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Bài 1: Viết phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với mặt phẳng (P): x + 2x + 2z – 5 = 0.

Lời giải:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 8/3

Do (P) tiếp xúc với mặt cầu (S) nên bán kính mặt cầu R=d(I;(P))=8/3

Khi đó, phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với (P) là:

(x-1)2+(y+2)2+z2=64/9

Bài 2: Viết phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy)

Lời giải:

Phương trình mặt phẳng (Oxy) là: z = 0

Khoảng cách từ I đến mặt phẳng Oxy là:

d(I;(Oxy))=|-2|/√(12 )=2

Phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy) là:

(x-3)2+(y+1)2+(z+2)2=4

Bài 3: Cho 4 điểm A (3; -2; -2), B (3; 2; 0), C (0; 2; 1) và D (-1; 1; 2). Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD).

Lời giải:

BC=(-3;0;1); BD=(-4; -1;2)

⇒ [BC , BD ]=(1;2;3)

⇒ Vecto pháp tuyến của mặt phẳng (BCD) là: n =(1;2;3)

Phương trình mặt phẳng (BCD) có VPPT n=(1;2;3) và đi qua điểm B(3; 2; 0) là: x-3+2(y-2)+3z=0

⇔ x+2y+3z-7=0

Khoảng cách từ A đến mặt phẳng (BCD) là:

d(A;(BCD))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14

Khi đó, phương trình mặt cầu tâm A và tiếp xúc với (BCD) là:

(x-3)2+(y+2)2+(z+2)2=14

Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng

Do mặt cầu (S) tiếp xúc với mặt phẳng (d) nên khoảng cách từ tâm I đến mặt phẳng (d) bằng bán kính R

Gọi M là điểm bất kì trên d, u là vecto chỉ phương của d. Khi đó, khoảng cách từ I đến d được tính theo công thức:

R=d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Bài 1: Viết phương trình mặt cầu tâm I (1; -2; 3) và tiếp xúc với trục Oy

Lời giải:

Phương trình đường thẳng Oy là Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vecto chỉ phương của Oy là u =(0;1;0)

M (0; 1; 0) ∈ Oy ⇒ IM=(-1;3; -3)

⇒ [IM , u ]=(-3;0;1)

Khoảng cách từ I đến trục Oy là:

d(I;(Oy))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √10

Do mặt cầu tiếp xúc với trục Oy nên khoảng cách từ tâm I đến trục Oy là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+(y+2)2+(z-3)2=10

Bài 2: Cho điểm A ( -3; 1; 4) và đường thẳng d có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình mặt cầu tâm A, tiếp xúc với d là:

Lời giải:

Đường thẳng d có VTCP u =(2; 1; -1) và đi qua điểm M (-1; 2; -3)

Ta có: AM=(2;1; -7)

[ AM , u ]=(6; -12;0)

Khoảng cách từ A đến đường thẳng d là:

d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √30

Do mặt cầu tiếp xúc với đường thẳng d nên khoảng cách từ tâm I đến trục d là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x+3)2+(y-1)2+(z-4)2=30

Bài giảng: Cách viết phương trình mặt cầu - dạng bài nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)


phuong-phap-toa-do-trong-khong-gian.jsp


Giải bài tập lớp 12 sách mới các môn học