Lý thuyết Nguyên hàm lớp 12 (hay, chi tiết)



Bài viết Lý thuyết Nguyên hàm lớp 12 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Lý thuyết Nguyên hàm.

Bài giảng: Bài 1 : Nguyên hàm - Thầy Trần Thế Mạnh (Giáo viên VietJack)

I. NGUYÊN HÀM VÀ TÍNH CHẤT

1. Nguyên hàm

    Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.

    Định lí:

    1) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

    2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

    Do đó F(x) + C, C ∈ R là họ tất cả các nguyên hàm của f(x) trên K. Ký hiệu ∫f(x)dx = F(x) + C

2. Tính chất của nguyên hàm

    Tính chất 1: (∫f(x)dx)' = f(x) và ∫f'(x)dx = f(x) + C

    Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.

    Tính chất 3: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx

3. Sự tồn tại của nguyên hàm

    Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

4. Bảng nguyên hàm của một số hàm số sơ cấp

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM

1. Phương pháp đổi biến số

    Định lí 1: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì

    ∫f(u(x))u'(x)dx = F(u(x)) + C

    Hệ quả: Nếu u = ax + b (a ≠ 0) thì ta có ∫f(ax + b)dx = (1/a)F(ax + b) + C

2. Phương pháp nguyên hàm từng phần

    Định lí 2: Nếu hai hàm số u = u(x) và y = y(x) có đạo hàm liên tục trên K thì

    ∫u(x)v'(x)dx = u(x)v(x) - ∫u'(x)v(x)dx

    Hay ∫udv = uv - ∫vdu

    - Tìm nguyên hàm bằng phương pháp biến đổi trực tiếp.

    - Tìm nguyên hàm bằng phương pháp đổi biến số.

    - Tìm nguyên hàm bằng phương pháp nguyên hàm từng phần.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:


nguyen-ham-tich-phan-va-ung-dung.jsp


Giải bài tập lớp 12 sách mới các môn học