Giải Toán 9 trang 6 Tập 2 Kết nối tri thức

Với Giải Toán 9 trang 6 Tập 2 trong Bài 18: Hàm số y = ax^2 (a khác 0) Toán 9 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 6.

HĐ3 trang 6 Toán 9 Tập 2: Cho hàm số y = 2x2.

a) Hoàn thành bảng giá trị sau vào vở:

HĐ3 trang 6 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

b) Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; 2x2) với x ∈ ℝ và nối lại, ta được đồ thị của hàm số y = 2x2.

Lời giải:

a) Thay lần lượt các giá trị x = –3; x = –2; …; x = 3 vào hàm số y = 2x2, ta được bảng giá trị:

x

–3

–2

–1

0

1

2

3

y = 2x2

18

8

2

0

2

8

18

b) Biểu diễn các điểm (–3; 18); (–2; 8); (–1; 2); (0; 0); (1; 2); (2; 8) và (3; 18) trong bảng giá trị ở câu a và các điểm (x; 2x2) với x ∈ ℝ trên mặt phẳng tọa độ Oxy, sau đó nối lại, ta được đồ thị của hàm số y = 2x2 như sau:

HĐ3 trang 6 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

HĐ4 trang 6 Toán 9 Tập 2: Xét đồ thị của hàm số y = 2x2 đã vẽ ở HĐ3 (H.6.3).

HĐ4 trang 6 Toán 9 Kết nối tri thức Tập 2 | Giải Toán 9

a) Đồ thị nằm phía trên hay phía dưới trục hoành? Điểm nào là điểm thấp nhất của đồ thị?

b) So sánh hoành độ và tung độ của các cặp điểm thuộc đồ thị: A(1; 2) và A’(–1; 2); B(2; 8) và B’(–2; 8). Từ đó hãy nhận xét mối liên hệ về vị trí giữa các điểm nêu trên.

c) Tìm điểm C có hoành độ x = 12 thuộc đồ thị. Xác định tọa độ của điểm C’ đối xứng với điểm C qua trục tung Oy và cho biết điểm C’ có thuộc đồ thị đã cho hay không.

Lời giải:

a) Đồ thị nằm phía trên trục hoành. Điểm thấp nhất của đồ thị là gốc tọa độ O(0; 0).

b) ⦁ Xét cặp điểm A(1; 2) và A’(–1; 2): Hai điểm này có hoành độ đối nhau và tung độ bằng nhau.

⦁ Xét cặp điểm B(2; 8) và B’(–2; 8): Hai điểm này có hoành độ đối nhau và tung độ bằng nhau.

→ Nhận xét: Hai điểm (x; y) và (–x; y) đối xứng với nhau qua trục tung Oy.

c) ⦁ Gọi C12;y0 thuộc đồ thị hàm số y = 2x2. Do đó x = 12 và y = y0 thỏa mãn hàm số y = 2x2.

Thay x = 12 và y = y0 vào hàm số y = 2x2, ta được: y0=2122=12.

Vì vậy ta có điểm C12;12.

Theo kết quả nhận xét của câu b, ta xác định được tọa độ của điểm C’ đối xứng với điểm C qua trục tung Oy là C'12;12.

⦁ Xét điểm C'12;12:

Thay hoành độ x = -12 vào hàm số y = 2x2, ta được: y=2122=12, bằng tung độ của điểm C’.

Vậy điểm C'12;12 thuộc đồ thị hàm số = 2x2.

Lời giải bài tập Toán 9 Bài 18: Hàm số y = ax^2 (a khác 0) hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Kết nối tri thức khác