Giải Toán 9 trang 89 Tập 1 Chân trời sáng tạo
Với Giải Toán 9 trang 89 Tập 1 trong Bài 2: Tiếp tuyến của đường tròn Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 89.
Bài 3 trang 89 Toán 9 Tập 1: Trong Hình 16, AB = 9, BC = 12, AC = 15 và BC là đường kính của đường tròn (O). Chứng minh AB là tiếp tuyến của đường tròn (O).
Lời giải:
Xét ∆ABC có:
⦁ AB2 + BC2 = 92 + 122 = 225;
⦁ AC2 = 152 = 225.
Do đó AB2 + BC2 = AC2,
Theo định lí Pythagore đảo, ta có ∆ABC vuông tại B.
Suy ra AB ⊥ BC hay AB ⊥ OB.
Xét đường tròn (O) có AB ⊥ OB tại B thuộc đường tròn (O) nên AB là tiếp tuyến của đường tròn (O).
Bài 4 trang 89 Toán 9 Tập 1: Cho tam giác ABC có đường tròn (O) nằm trong và tiếp xúc với ba cạnh của tam giác. Biết AM = 6 cm, BP = 3 cm, CE = 8 cm (Hình 17). Tính chu vi tam giác ABC.
Lời giải:
Ta có:
⦁ AE, AM là hai tiếp tuyến của (O) cắt nhau tại A nên AE = AM = 6 cm (tính chất hai tiếp tuyến cắt nhau).
⦁ BM, BP là hai tiếp tuyến của (O) cắt nhau tại B nên BM = BP = 3 cm (tính chất hai tiếp tuyến cắt nhau).
⦁ CP, CE là hai tiếp tuyến của (O) cắt nhau tại C nên CP = CE = 8 cm (tính chất hai tiếp tuyến cắt nhau).
Chu vi tam giác ABC là:
AB + BC + CA = AM + BM + BP + CP + CE + AE
= 6 + 3 + 3 + 8 + 8 + 6 = 34 (cm).
Bài 5 trang 89 Toán 9 Tập 1: Cho đường tròn (O; R) có đường kính AB. Vẽ dây AC sao cho AC = R. Gọi I là trung điểm của dây AC. Đường thẳng OI cắt tiếp tuyến Ax tại M. Chứng minh rằng:
a) có số đo bằng 90°, từ đó suy ra độ dài của BC theo R;
b) OM là tia phân giác của
c) MC là tiếp tuyến của đường tròn (O; R).
Lời giải:
a) Vì A, B, C cùng nằm trên đường tròn (O; R) có đường kính AB nên và AB = 2R.
Xét ∆ABC có CO là đường trung tuyến ứng với cạnh AB và nên ∆ABC là tam giác vuông tại C. Do đó
Xét ∆ABC vuông tại C, theo định lí Pythagore, ta có: AB2 = BC2 + AC2.
Suy ra BC2 = AB2 – AC2 = (2R)2 – R2 = 3R2.
Do đó
b) Xét ∆OAC có OA = OC nên ∆OAC là tam giác cân tại O.
∆OAC cân tại O có OI là đường trung tuyến ứng với cạnh đáy nên đồng thời là đường phân giác của tam giác.
Do đó OM là tia phân giác của
c) Xét ∆OAM và ∆OCM có:
OA = OC = R;
(do OM là tia phân giác của
OM là cạnh chung.
Do đó ∆OAM = ∆OCM (c.g.c).
Suy ra (hai góc tương ứng).
Mà nên
Do đó MC ⊥ OC tại C, lại có C thuộc (O; R) nên MC là tiếp tuyến của đường tròn (O; R).
Bài 6 trang 89 Toán 9 Tập 1: Cho đường tròn (O; 5 cm) điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A, B là hai tiếp điểm) vuông góc với nhau tại M.
a) Tính độ dài của MA và MB.
b) Qua giao điểm I của đoạn thẳng MO và đường tròn (O), vẽ một tiếp tuyến cắt OA, OB lần lượt tại C, D. Tính độ dài của CD.
Lời giải:
Vì MA, MB lần lượt là hai tiếp tuyến của đường tròn (O) tại A, B nên MA ⊥ OA và MB ⊥ OB hay
Xét tứ giác OAMB có: (do MA ⊥ MB).
Do đó tứ giác OAMB là hình chữ nhật.
Lại có OA = OB = 5 cm (do A, B nằm trên đường tròn (O; 5 cm)).
Suy ra hình chữ nhật OAMB là hình vuông, nên MA = MB = OA = OB = 5 cm.
b) Vì OAMB là hình vuông nên và OM là tia phân giác của góc AOB.
Do đó
Vì CD là tiếp tuyến của đường tròn (O) tại I nên CD ⊥ OI.
Xét ∆OCI vuông tại I, ta có:
Xét ∆ODI vuông tại I, ta có:
Vậy CD = CI + DI = 5 + 5 = 10 (cm).
Bài 7 trang 89 Toán 9 Tập 1: Cho đường tròn (O), điểm M nằm ngoài (O) sao cho MA và MB là hai tiếp tuyến (A, B là hai tiếp điểm) thỏa mãn Biết chu vi tam giác MAB là 18 cm, tính độ dài dây AB.
Lời giải:
Vì MA và MB là hai tiếp tuyến tại A, B của đường tròn (O) cắt nhau tại M nên MA = MB (tính chất hai tiếp tuyến cắt nhau).
Do đó ∆MAB cân tại M, lại có nên ∆MAB là tam giác đều.
Suy ra MA = MB = AB.
Chu vi ∆MAB là: MA + MB + AB = 3AB.
Theo bài, chu vi tam giác MAB là 18 cm nên 3AB = 18, do đó AB = 6 (cm).
Vậy AB = 6 cm.
Bài 8 trang 89 Toán 9 Tập 1: Trong Hình 18, AB là tiếp tuyến của đường tròn (O) tại B.
a) Tính bán kính r của đường tròn (O).
b) Tính chiều dài cạnh OA của tam giác ABO.
Lời giải:
a) Vì AB là tiếp tuyến của đường tròn (O) tại B nên AB ⊥ OB tại B.
Xét ∆OAB vuông tại B, theo định lí Pythagore, ta có: OA2 = OB2 + AB2
Suy ra (OC + CA)2 = OB2 + AB2
Do đó (r + 2)2 = r2 + 42. (*)
Giải phương trình (*):
(r + 2)2 = r2 + 42
r2 + 4r + 4 = r2 + 16
4r = 12
r = 3.
Vậy bán kính của đường tròn (O) là r = 3.
b) Ta có OA = OC + CA = r + 2 = 3 + 2 = 5 (cm).
Vậy OA = 5 cm.
Lời giải bài tập Toán 9 Bài 2: Tiếp tuyến của đường tròn hay khác:
- Giải Toán 9 trang 83
- Giải Toán 9 trang 85
- Giải Toán 9 trang 86
- Giải Toán 9 trang 87
- Giải Toán 9 trang 88
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Chân trời sáng tạo
- Giải SBT Toán 9 Chân trời sáng tạo
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST