Giải Toán 9 trang 87 Tập 1 Chân trời sáng tạo

Với Giải Toán 9 trang 87 Tập 1 trong Bài 2: Tiếp tuyến của đường tròn Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 87.

Khám phá 3 trang 87 Toán 9 Tập 1: Cho đường tròn (O) và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A (Hình 10).

Khám phá 3 trang 87 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

a) Chứng minh hai tam giác ABO và ACO bằng nhau.

b) Tìm các đoạn thẳng bằng nhau và các góc bằng nhau trong Hình 10.

Lời giải:

a) Vì AB, AC lần lượt là tiếp tuyến của đường tròn (O) tại B, C nên AB ⊥ OB và AC ⊥ OC.

Xét ∆ABO và ∆ACO có:

ABO^=ACO^=90°;

OB = OC (cùng là bán kính của đường tròn (O));

OA là cạnh chung.

Do đó ∆ABO = ∆ACO (cạnh huyền – cạnh góc vuông).

b) Theo câu a, ∆ABO = ∆ACO, suy ra:

⦁ OB = OC; AB = AC (hai cạnh tương ứng);

ABO^=ACO^=90°; BAO^=CAO^;  BOA^=COA^ (các cặp góc tương ứng).

Thực hành 3 trang 87 Toán 9 Tập 1: Cho điểm M nằm ngoài đường tròn (I; 6 cm) và ME, MF là hai tiếp tuyến của đường tròn này tại E và F. Cho biết EMF^=60°.

a) Tính số đo EMI^ và EIF^.

b) Tính độ dài MI.

Lời giải:

Thực hành 3 trang 87 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Vì ME, MF lần lượt là hai tiếp tuyến tại E, F của đường tròn (I) và cắt nhau tại M nên:

⦁ ME ⊥ IE tại E, MF ⊥ IF tại F hay IEM^=90°;  IFM^=90°;

⦁ MI là tia phân giác của góc EMF. Do đó EMI^=12EMF^=1260°=30°.

Xét tứ giác IEMF có: EIF^+IEM^+EMF^+IFM^=360°(tổng các góc của một tứ giác).

Suy ra EIF^=180°IEM^+EMF^+IFM^

Hay EIF^=360°90°+60°+90°=120°.

b) Vì E thuộc đường tròn (I; 6 cm) nên IE = 6 cm.

Xét ∆IEM vuông tại E, ta có: sinEMI^=IEMI.

Suy ra MI=IEsinEMI^=6sin30°=12 (cm).

Lời giải bài tập Toán 9 Bài 2: Tiếp tuyến của đường tròn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác