Giải Toán 9 trang 77 Tập 2 Chân trời sáng tạo

Với Giải Toán 9 trang 77 Tập 2 trong Bài 3: Đa giác đều và phép quay Toán 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 77.

Thực hành 1 trang 77 Toán 9 Tập 2: Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung MN,  NP,  PQ,​​  QR,  RM bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?

Lời giải:

Thực hành 1 trang 77 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9 

Các cung MN,  NP,  PQ,​​  QR,  RM chia đường tròn (O; R) thành 6 cung có số đo bằng nhau, suy ra số đo mỗi cung là 360° : 5 = 72°.

Ta có MON^ là góc nội tiếp chắn cung MN suy ra MON^ = 72o.

Xét ΔMON, có: OM = ON = R suy ra ΔMON cân tại O.

Suy ra OMN^=ONM^ (tính chất tam giác cân).

Do đó OMN^=ONM^=180°MON^2=54°.

Tương tự, ta có OPN^=ONP^=54°.

Suy ra MPN^=OPN^+ONP^=54°+54°=108°.

Xét ΔOMN và ΔONP có:

MON^=NOP^; OM = OP; ON chung.

Do đó ΔOMN = ΔONP (c.g.c).

Suy ra MN = NP (hai cạnh tương ứng).

Chứng minh tương tự, ta thu được ngũ giác MNPQR có các cạnh bằng nhau và các góc đều bằng nhau (đều bằng 108°).

Vậy MNPQR là một đa giác đều.

Vận dụng 1 trang 77 Toán 9 Tập 2: Cho lục giác đều ABCDEF có M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA. Đa giác MNPQRS có là đa giác đều không? Vì sao?

Lời giải:

Vận dụng 1 trang 77 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

Do ABCDEF là lục giác đều nên

• A^=B^=C^=D^=E^=F^=120°.

• AB = BC = CD = DE = EF = FA.

Vì M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, DE, EF, FA.

Suy ra AM = MB = BN = NC = CP = PD = DQ = QE = ER = RF = FS = SA.

Xét ΔSAM và ΔMBN có:

A^=B^ (chứng minh trên);

AM = BN (chứng minh trên);

SA = MB (chứng minh trên).

Do đó ΔSAM = ΔMBN  (c.g.c).

Suy ra SM = MN (hai cạnh tương ứng).

Chứng minh tương tự ta được: MN = NP, NP = PQ, QR = RS, RS = SM.          (1)

Vì AS = AM (chứng minh trên) suy ra ΔASM cân tại A.

Suy ra ASM^=ASM^ (tính chất tam giác cân).

Do đó ASM^=ASM^=180°A^2=30° (tổng 3 góc trong của tam giác).

Tương tự ta thu được:

BMN^=BNM^=180°B^2=30°;

CNP^=CPN^=180°C^2=30°;

DPQ^=DQP^=180°D^2=30°;

EQR^=ERQ^=180°E^2=30°;

FRS^=FSR^=180°F^2=30°.

Ta có RSM^=180°FSR^ASM^=180°30°30°=120°.

Tương tự, ta được: AMN^=MNP^=NQP^=PQR^=QRS^=120°. (2)

Từ (1) và (2), suy ra MNPQRS là đa giác đều.

Khám phá 2 trang 77 Toán 9 Tập 2: Vẽ hình vuông ABCD tâm O (Hình 5a). Cắt một tấm bìa hình vuông (gọi là ℋ) cùng độ dài cạnh với hình vuông ABCD (Hình 5b). Đặt hình vuông ℋ trùng khít lên hình vuông ABCD sao cho tại đỉnh M của H trùng với điểm A, rồi dùng đinh ghim cố định tâm của ℋ tại tâm O của hình vuông ABCD (Hình 5c). Quay hình vuông ℋ quanh điểm O ngược chiều kim đồng hồ cho đến khi đỉnh M của ℋ trùng lại với đỉnh A (Hình 5d).

Khám phá 2 trang 77 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

a) Khi điểm M trùng với B thì M vạch lên một cung tròn có số đo bằng bao nhiêu?

b) Trong quá trình trên, hình vuông ℋ trùng khít với hình vuông ABCD bao nhiêu lần (không tính vị trí ban đầu trước khi quay)? Ứng với mỗi lần đó, điểm M vạch nên cung có số đo bao nhiêu?

Lời giải:

a) Khi điểm M trùng với B thì M vạch lên một cung tròn có số đo bằng 270°.

b) Trong quá trình trên, hình vuông H trùng khít với hình vuông ABCD 4 lần (không tính vị trí ban đầu trước khi quay).

• Lần 1, điểm M vạch lên cung số đo 90°.

• Lần 2, điểm M vạch lên cung số đo 180°.

• Lần 3, điểm M vạch lên cung số đo 270°.

• Lần 4, điểm M vạch lên cung số đo 360°.

Lời giải bài tập Toán 9 Bài 3: Đa giác đều và phép quay hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác