Khám phá 3 trang 77 Toán 9 Tập 1 Chân trời sáng tạo

Khám phá 3 trang 77 Toán 9 Tập 1: Trên đường tròn (O; R), lấy bốn điểm A, B, M, N sao cho AB đi qua O và MN không đi qua O (Hình 9).

Khám phá 3 trang 77 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

a) Tính độ dài đoạn thẳng AB theo R.

b) So sánh độ dài của MN và OM + ON. Từ đó, so sánh độ dài của MN và AB.

Lời giải:

a) Vì hai điểm A, B cùng nằm trên đường tròn (O; R) nên OA = OB = R.

Mà AB đi qua O hay O nằm giữa A, B nên AB = OA + OB = R + R = 2R.

Vậy AB = 2R.

b) Xét ∆OMN có: OM + ON > MN (bất đẳng thức trong tam giác). (1)

Ta có hai điểm M, N cùng nằm trên đường tròn (O; R) nên OM = ON = R.

Do đó từ (1) ta có R + R > MN hay 2R > MN.

Mà AB = 2R (câu a) nên AB > MN.

Lời giải bài tập Toán 9 Bài 1: Đường tròn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Chân trời sáng tạo khác