Bài 11 trang 82 Toán 9 Tập 2 Chân trời sáng tạo
Bài 11 trang 82 Toán 9 Tập 2: Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao. Lần lượt vẽ đường tròn (O) đường kính BH và đường tròn (O') đường kính HC.
a) Xét vị trí tương đối của hai đường tròn (O) và (O').
b) Đường tròn (O) cắt AB tại E, đường tròn (O') cắt AC tại F. Chứng minh rằng tứ giác AEHF là hình chữ nhật.
c) Chứng minh rằng EF là tiếp tuyến đường tròn (O) và đồng thời là tiếp tuyến đường tròn (O').
d) Đường trung tuyến AM của tam giác ABC cắt EF tại N. Cho biết AB = 6 cm, AC = 8 cm. Tính diện tích tam giác ANF.
Lời giải:
a) Đường tròn (O) có bán kính OH, đường tròn (O') có bán kính O'H.
Vì OO' = OH + HO' nên (O) và (O') tiếp xúc ngoài.
b) Ta có (góc nội tiếp chắn nửa đường tròn (O)).
Suy ra HE ⊥ AB hay
Tương tại, (góc nội tiếp chắn nửa đường tròn (O')).
Suy ra HF ⊥ AC hay
Tứ giác AEHF có .
Do đó, tứ giác AEHF là hình chữ nhật.
c) Gọi I là giao điểm AH và EF, ta có
IA = IE = IH = IF (tính chất hình chữ nhật).
• Xét ∆IEO và ∆IHO có: OI là cạnh chung; IE = IH; OE = OH.
Do đó ∆IEO = ∆IHO (c.c.c)
Suy ra (hai góc tương ứng).
Vì và E thuộc đường tròn (O) nên EF là tiếp tuyến của (O). (1)
• Xét ∆IFO' và ∆IHO' có: O'I là cạnh chung; IF = IH; O'F = O'H.
Do đó ∆IFO' = ∆IHO' (c.c.c).
Suy ra (hai góc tương ứng).
Vì và E thuộc đường tròn (O) nên EF là tiếp tuyến của (O). (2)
Từ (1) và (2) suy ra EF là tiếp tuyến của (O) và đồng thời là tiếp tuyến của (O').
d) Tam giác ABC vuông tại A có AM là đường trung tuyến.
Suy ra AM = BM = CM = BC.
Do đó ∆O'FC cân tại O' (vì O'F = O'C) suy ra
Từ (3) và (4) suy ra
Mà là hai góc đồng vị nên AM // O'F).
Mặt khác O'F ⊥ EF, suy ra AM ⊥ EF tại N.
Xét tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có:
BC2 = AB2 + AC2.
Suy ra
Diện tích tam giác ABC là:
Suy ra
Do đó EF = AH = 4,8 cm.
• Vì ∆AHF ᔕ ∆ACH (g.g) nên .
Suy ra
• Vì ∆AEF ᔕ ∆NAF (g.g) nên .
Suy ra
Xét tam giác AFN vuông tại A, áp dụng định lí Pythagore, ta có:
AF2 = AN2 + NF2.
Suy ra
Diện tích tam giác AFN là:
\
Vậy diện tích tam giác ANF khoảng 2 cm2.
Lời giải bài tập Toán 9 Bài tập cuối chương 9 hay, chi tiết khác:
Bài 3 trang 81 Toán 9 Tập 2: Tứ giác ở hình nào dưới đây là tứ giác nội tiếp đường tròn (O)? ....
Bài 4 trang 81 Toán 9 Tập 2: Trong các phát biểu sau, phát biểu nào đúng? ....
Bài 5 trang 81 Toán 9 Tập 2: Cho tứ giác MNPQ nội tiếp đường tròn (O; R) và ....
Bài 6 trang 81 Toán 9 Tập 2: Cho tứ giác ABCD nội tiếp đường tròn (O). Biết (Hình 5) ....
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Chân trời sáng tạo
- Giải SBT Toán 9 Chân trời sáng tạo
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST