Giải Toán 9 trang 81 Tập 1 Cánh diều

Với Giải Toán 9 trang 81 Tập 1 trong Bài 1: Tỉ số lượng giác của góc nhọn Toán lớp 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 81.

Bài 1 trang 81 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AC = 4 cm, BC = 6 cm. Tính các tỉ số lượng giác của góc B.

Lời giải:

Bài 1 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, theo định lý Pythagore, ta có:

BC2 = AB2 + AC2

Suy ra AB2 = BC2 – AC2 = 62 – 42 = 20.

Do đó AB = 20=225=25 (cm).

Xét ∆ABC vuông tại A, ta có:

sinB=ACBC=46=23;cosB=ABBC=256=53;

tanB=ACAB=425=25=255;cotB=ABAC=254=52.

Vậy các tỉ số lượng giác của góc B là sinB=23cosB=53tanB=255cotB=52.

Bài 2 trang 81 Toán 9 Tập 1: Cho tam giác ABC vuông tại A có AB = 2 cm, AC = 3 cm. Tính các tỉ số lượng giác của góc C.

Lời giải:

Bài 2 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆ABC vuông tại A, theo định lý Pythagore, ta có:

BC2 = AB2 + AC2 = 22 + 32 = 13.

Suy ra BC = 13 cm.

Xét ∆ABC vuông tại A, ta có:

sinC=ABBC=213; cosC=ACBC=313;

tanC=ABAC=23; cotC=ACAB=32.

Vậy các tỉ số lượng giác của góc C là sinC=213cosC=313tanC=23cotC=32.

Bài 3 trang 81 Toán 9 Tập 1: Cho tam giác MNP có MN = 5 cm, MP = 12 cm, NP = 13 cm. Chứng minh tam giác MNP vuông tại M. Từ đó, tính các tỉ số lượng giác của góc N.

Lời giải:

Bài 3 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Xét ∆MNP, ta có: NP2 = 132 = 169 và MN2 + MP2 = 52 + 122 = 169.

Suy ra NP2 = MN2 + MP2.

Do đó ∆MNP vuông tại M (định lí Pythagore đảo).

Khi đó:

sinN=MPNP=1213; cosN=MNNP=513;

tanN=MPMN=125; cotN=MNMP=512.

Bài 4 trang 81 Toán 9 Tập 1: Mỗi tỉ số lượng giác sau đây bằng tỉ số lượng giác nào của góc 63°? Vì sao?

a) sin27°;

b) cos27°;

c) tan27°;

d) cot27°.

Lời giải:

Vì 27° và 63° là hai góc phụ nhau nên ta có:

a) sin27° = cos63°;

b) cos27° = sin63°;

c) tan27° = cot63°;

d) cot27° = tan63°.

Bài 5 trang 81 Toán 9 Tập 1: Sử dụng máy tính cầm tay để tính các tỉ số lượng giác của mỗi góc sau (làm tròn kết quả đến hàng phần trăm):

a) 41°;

b) 28°35’;

c) 70°27’46’’.

Lời giải:

Bài 5 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

b)

Bài 5 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

c)

Bài 5 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Bài 6 trang 81 Toán 9 Tập 1: Sử dụng tỉ số lượng giác của hai góc phụ nhau, tính giác trị biểu thức:

A = sin 25° + cos 25° – sin 65° – cos 65°.

Lời giải:

Vì 25° và 65° là hai góc phụ nhau nên ta có sin25° = cos65° và sin65° = cos25°.

Do đó:

A = sin 25° + cos 25° – sin 65° – cos 65°

   = cos 65° + cos 25° – cos 25° – cos 65°

   = (cos 65° – cos 65°) + (cos 25° – cos 25°)

   = 0.

Bài 7 trang 81 Toán 9 Tập 1: Cho góc nhọn α. Biết rằng, tam giác ABC vuông tại A sao cho B^=α.

a) Biểu diễn các tỉ số lượng giác của góc nhọn α theo AB, BC, CA.

b) Chứng minh:

sin2α+cos2α=1; tanα=sinαcosα; cotα=cosαsinα; tanαcotα=1.

Từ đó, tính giá trị biểu thức: S = sin2 35° + cos2 35°; T = tan 61° . cot 61°.

Lời giải:

Bài 7 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

a) Xét ∆ABC vuông tại A, ta có:

sinα = sinB = ACBC; cosα = cosB = ABBC;

tanα = tanB = ACAB; cotα = cotB = ABAC.

b) Xét ∆ABC vuông tại A, ta có:

⦁ BC2 = AB2 + AC2 (định lí Pythagore);

sin2α+cos2α=ACBC2+ABBC2=AC2+AB2BC2=BC2BC2=1;

sinαcosα=ACBCABBC=ACBCBCAB=ACAB=tanα;

cosαsinα=ABBCACBC=ABBCBCAC=ABAC=cotα;

⦁ cotα.tanα = ABACACAB = 1.

Ta có: S = sin2 35° + cos2 35° = 1; T = tan 61° . cot 61° = 1.

Bài 8 trang 81 Toán 9 Tập 1: Hình 10 mô tả tia nắng mặt trời dọc theo AB tạo với phương nằm ngang trên mặt đất một góc α=ABH^. Sử dụng máy tính cầm tay, tính số đo góc α (làm tròn kết quả đến hàng đơn vị của độ) biết AH = 2 m, BH = 5 m.

Bài 8 trang 81 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

Xét ∆ABH vuông tại H, ta có tanα = tanB = AHBH = 25.

Suy ra α ≈ 22°.

Lời giải bài tập Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác