Bài 11 trang 67 Toán 9 Tập 2 Cánh diều

Bài 11 trang 67 Toán 9 Tập 2: Cầu Trường Tiền (hay cầu Tràng Tiền) ở thành phố Huế được khởi công vào tháng 5/1899 và khánh thành vào ngày 18/12/1900. Cầu được thiết kế theo kiến trúc Gothic, bắc qua sông Hương. Từ Festival Huế năm 2002, cầu Trường Tiền được lắp đặt một hệ thống chiếu sáng đổi màu hiện đại. Cầu dài 402,60 m, gồm 6 nhịp dầm thép.

(Nguồn: https://vi.wikipedia.org)

Giả sử một nhịp dầm thép có dạng parabol y = ax2 trong hệ trục toạ độ Oxy, ở đó Ox song song với mặt cầu. Biết rằng, hai chân nhịp dầm thép trên mặt cầu cách nhau 66,66 m, khoảng cách từ đỉnh cao nhất của nhịp dầm thép đến mặt cầu là 5,45 m (Hình 11).

Bài 11 trang 67 Toán 9 Tập 2 Cánh diều | Giải Toán 9

a) Xác định tọa độ của hai chân nhịp dầm thép đó.

b) Tìm a (làm tròn kết quả đến hàng phần nghìn).

Lời giải:

a) Gọi tọa độ của hai chân nhịp dầm thép đó là A(x1; y1) và B(x2; y2).

Vì nhịp dầm thép có dạng parabol y = ax2 và khoảng cách từ đỉnh cao nhất của nhịp dầm thép đến mặt cầu là 5,45 m nên đồ thị của hàm số y = ax2 nằm bên dưới trục hoành (a < 0) và y1 = y2 = –5,45.

Mặt khác, đồ thị hàm số y = ax2 nhận trục tung làm trục đối xứng, mà hai chân nhịp dầm thép trên mặt cầu cách nhau 66,66 m nên ta có x1=66,662=33,33 và x2=66,662=33,33.

Vậy hai chân nhịp dầm trên có toạ độ lần lượt là A(–33,33; –5,45); B(33,33; –5,45).

b) Vì đồ thị hàm số y = ax2 đi qua điểm B(33,33; –5,45) nên thay x = 33,33 và y = –5,45 vào hàm số y = ax2, ta được:

–5,45 = a.33,332, suy ra a=5,4533,3320,005 (thỏa mãn).

Vậy a ≈ –0,005.

Lời giải bài tập Toán 9 Bài tập cuối chương 7 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác