Bài 5 trang 135 Toán 8 Tập 2 | Kết nối tri thức Giải Toán 8

Bài 5 trang 135 Toán 8 Tập 2: Cho biểu thức P=x+y1xy+xy1+xy:1+x2+y2+2x2y21x2y2, trong đó x và y là hai biến thỏa mãn điều kiện x2y2 – 1 ≠ 0.

a) Tính mỗi tổng A=x+y1xy+xy1+xy và B=1+x2+y2+2x2y21x2y2.

b) Từ kết quả câu a, hãy thu gọn P và giải thích tại sao giá trị của P không phụ thuộc vào giá trị của biến y.

c) Chứng minh đẳng thức P=11x21+x2.

d) Sử dụng câu c, hãy tìm các giá trị của x và y sao cho P = 1.

Lời giải:

a) A=x+y1xy+xy1+xy=x+y1+xy+xy1xy1xy1+xy

        =x+x2y+y+xy2+xx2yy+xy21x2y2         

        =2x+2xy21x2y2

B=1+x2+y2+2x2y21x2y2=1x2y2+x2+y2+2x2y21x2y2=1+x2+y2+x2y21x2y2

          =1+x2+y21+x21x2y2=1+x21+y21x2y2.

b) P  = A : B =2x+2xy21x2y2:1+x21+y21x2y2

                    =2x1+y21x2y2.1x2y21+x21+y2=2x1+x2 (*)

Trong biểu thức (*) ta thấy không xuất hiện biến y, chứng tỏ giá trị của biểu thức P nếu xác định thì nó không phụ thuộc vào biến y.

c) Ta có 11x21+x2=1+x21+2xx21+x2=2x1+x2.

So sánh kết quả này với (*) suy ra P=11x21+x2

d) Để P  = 1 thì 11x21+x2=1, tức là 1x21+x2=0, suy ra (1 – x)2 = 0, do đó x = 1.

Vì x2y2 – 1 ≠ 0 nên với x = 1 thì y2 – 1 ≠ 0 hay y ≠ 1; y ≠ –1.

Vậy để P = 1 thì x = 1 và y ≠ 1; y ≠ –1.

Lời giải bài tập Toán 8 Bài tập ôn tập cuối năm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác