Giải Toán 8 trang 59 Tập 2 Chân trời sáng tạo
Với Giải Toán 8 trang 59 Tập 2 trong Bài tập cuối chương 7 Toán 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 59.
Bài 7 trang 59 Toán 8 Tập 2: Cho Hình 5, biết MN // DE, MN = 6 cm, MP = 3 cm, PE = 5 cm. Độ dài đoạn thẳng DE là
A. 6 cm
B. 5 cm
C. 8 cm
D. 10 cm
Lời giải:
Đáp án đúng là: D
Theo hệ quả định lí Thalès, ta có:
Vậy DE = 10 cm.
Bài 8 trang 59 Toán 8 Tập 2: Cho tam giác ABC, một đường thẳng song song với BC cắt AB và AC lần lượt tại D và E. Qua E kẻ đường thẳng song song với CD cắt AB tại F. Biết AB = 25 cm, AF = 9 cm, EF = 12 cm, độ dài đoạn DC là
A. 25 cm
B. 20 cm
C. 15 cm
D. 12 cm
Lời giải:
Đáp án đúng là: B
Xét tam giác ABC có: DE // BC.
Theo định lí Thalès, ta có:
Tương tự, ta có:
Do đó .
Suy ra
Xét tam giác ADC có EF // DC.
Theo hệ quả định lí Thalès, ta có:
Vậy DC = 20 cm.
Bài 9 trang 59 Toán 8 Tập 2: Cho tam giác ABC biết AM là đường phân giác. Trong các khẳng định sau, khẳng định nào đúng?
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: A
Xét tam giác ABC có AM là đường phân giác, ta có: .
Bài 10 trang 59 Toán 8 Tập 2: Cho tam giác ABC và điểm D trên cạnh AB sao cho AD = 13,5 cm, DB = 4,5 cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC.
Lời giải:
Gọi DH và BK lần lượt là khoảng cách từ D và B đến cạnh AC.
Ta có AB = AD + DB.
Khi đó AB = 13,5 + 4,5 = 18 (cm).
Vì DH // BK (cùng vuông góc với AC) nên áp dụng hệ quả định lí Thalès ta có:
Vậy tỉ số khoảng cách từ D và B đến cạnh AC là
Bài 11 trang 59 Toán 8 Tập 2: a) Độ cao AN và chiều dài bóng nắng của các đoạn thẳng AN, BN trên mặt đất được ghi lại như trong Hình 6. Tìm chiều cao AB của cái cây.
b) Một tòa nhà cao 24 m, đổ bóng nắng dài 36 m trên đường như Hình 7. Một người cao 1,6 m muốn đứng trong bóng râm của tòa nhà. Hỏi người đó có thể đứng cách tòa nhà xa nhất bao nhiêu mét?
Lời giải:
a) Ta có:
Vậy AB = 3,3125 m.
b)
Ta có: , do đó DC = 2,4 (m).
Mà BD + DC = BC suy ra BD = BC – DC hay x = 36 – 2,4 = 33,6 (m).
Vậy người đó có thể đứng cách tòa nhà xa nhất là 33,6 mét.
Bài 12 trang 59 Toán 8 Tập 2: Cho tam giác ABC có BC bằng 30 cm. Trên đường cao AH lấy các điểm K, I sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC (E, M ∈ AB; F, N ∈ AC).
a) Tính độ dài các đoạn thẳng MN và EF.
b) Tính diện tích tứ giác MNFE biết rằng diện tích tam giác ABC là 10,8 dm2.
Lời giải:
a) Vì MN // BC suy ra (theo hệ quả định lí Thalès) (1)
Trong tam giác ABH có MK // BH suy ra (2)
Từ (1) và (2) suy ra .
Mà AK = KI = IH nên suy ra .
Do đó .
Tam giác ABC có EF // BC suy ra .
Do đó .
Tam giác ABC có EF // BC suy ra .
Do đó (cm) .
Vậy MN = 10 cm và EF = 20 cm.
b) Đổi 10,8 dm2 = 1080 cm2.
MN // BC mà AH ⊥ BC nên AK ⊥ MN hay AK là đường cao của tam giác AMN.
Ta có .
.
Suy ra .
Hay .
Tương tự, ta có: .
Do đó .
Vậy diện tích tứ giác MNFE là 360 cm2.
Lời giải bài tập Toán 8 Bài tập cuối chương 7 hay khác:
Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST