Giải Toán 8 trang 52 Tập 2 Chân trời sáng tạo

Với Giải Toán 8 trang 52 Tập 2 trong Bài 2: Đường trung bình của tam giác Toán 8 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 8 dễ dàng làm bài tập Toán 8 trang 52.

Khởi động trang 52 Toán 8 Tập 2: Giữa hai điểm B và C có một hồ nước (xem hình bên). Biết DE = 45 m. Làm thế nào để tính được khoảng cách giữa hai điểm B và C?

Khởi động trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC, ta có: 

ADAB=AEAC=12

Theo định lí Thalès đảo, ta có DE // BC.

Suy ra DEBC=ADAB=12, vậy BC = 2DE = 90 m.

Sau khi học xong bài này:

Ta có: D, E là trung điểm của AB và AC nên DE là đường trung bình của tam giác ABC

suy ra DE = 12BC vậy BC = 2DE = 90 m.

Khám phá 1 trang 52 Toán 8 Tập 2: Cho tam giác ABC, vẽ đường thẳng d đi qua trung điểm M của cạnh AB, song song với cạnh BC và cắt AC tại N (Hình 1). Hãy chứng minh N là trung điểm của AC.

Khám phá 1 trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét tam giác ABC có MN // BC, theo định lí Thalès, ta có:

AMAB=ANAC=12

Suy ra N là trung điểm của AC.

Thực hành 1 trang 52 Toán 8 Tập 2: Tìm độ dài đoạn thẳng NQ trong Hình 4.

Thực hành 1 trang 52 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Ta có: OPQ^=OMN^ mà hai góc này ở vị trí đồng vị nên MN // PQ.

Xét tam giác OPQ ta có:

MN // PQ

M là trung điểm OP

Suy ra MN là đường trung bình tam giác OPQ.

Do đó là trung điểm OQ NQ = ON = 4.

Lời giải bài tập Toán 8 Bài 2: Đường trung bình của tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Chân trời sáng tạo khác