Giải Toán 7 trang 62 Tập 2 Chân trời sáng tạo

Với Giải Toán 7 trang 62 Tập 2 trong Bài 3: Tam giác cân Toán 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 7 dễ dàng làm bài tập Toán 7 trang 62.

Thực hành 3 trang 62 Toán 7 Tập 2: Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau.

Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau

Lời giải:

Tam giác ABC có ABC^=ACB^=68°nên tam giác ABC cân tại A.

Do đó AB = AC.

Tam giác MNP vuông tại N nên NPM^=90°NMP^=90°45°=45°(trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Tam giác MNP có NMP^=NPM^=45°nên tam giác MNP cân tại N.

Do đó NM = NP.

Tam giác EFG có E^=35°, G^=27°, F^là góc tù nên tam giác EFG không có hai góc nào bằng nhau.

Do đó tam giác EFG không phải tam giác cân.

Ta có hình vẽ sau:

Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau

Vận dụng 2 trang 62 Toán 7 Tập 2: Cho tam giác ABC cân tại A có góc B bằng 60°.

Chứng minh rằng tam giác ABC đều.

Cho tam giác ABC cân tại A có góc B bằng 60 độ.

Lời giải:

Tam giác ABC cân tại A nên AB = AC và B^=C^=60°.

Tam giác ABC có: A^=180°B^C^=180°60°60°=60°.

Tam giác ABC có B^=A^nên tam giác ABC cân tại C.

Do đó CA = CB.

Mà AB = AC nên AB = AC = BC.

Vậy tam giác ABC là tam giác đều.

Bài 1 trang 62 Toán 7 Tập 2: Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.

Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13)

Lời giải:

+) Xét Hình 13a:

ΔAMCcó AM = MC nên ΔAMCcân tại M.

ΔABMcó AB = AM = BM nên ΔABMđều.

+) Xét Hình 13b:

ΔDEHcó DE = DH nên ΔDEHcân tại D.

ΔGEFcó GE = GF nên ΔGEFcân tại G.

ΔEHFcó EH = EF nên ΔEHFcân tại E.

Do đó các tam giác cân: ΔDEH, ΔGEF, ΔEHF.

ΔEDGcó DE = EG = DG nên ΔEDGđều.

+) Xét Hình 13c:

ΔEGHcó EG = EH nên ΔEGHcân tại E.

ΔIGHcó IG = IH nên ΔIGHcân tại I.

ΔIGHcân có GIH^=60°nên ΔIGHđều.

+) Xét Hình 13d:

Trong tam giác MBC có: B^=180°M^C^=180°71°38°=71°.

Tam giác MBC có M^=B^nên tam giác MBC cân tại C.

Bài 2 trang 62 Toán 7 Tập 2: Cho Hình 14, biết ED = EF và EI là tia phân giác của DEF^.

Cho Hình 14, biết ED = EF và EI là tia phân giác của góc DEF

Chứng minh rằng:

a) ΔEID=ΔEIF.

b) Tam giác DIF cân.

Lời giải:

a) Do EI là tia phân giác của DEF^nên DEI^=FEI^.

Xét ΔEIDΔEIFcó:

ED = EF (theo giả thiết).

DEI^=FEI^(chứng minh trên).

EI chung.

Do đó ΔEID=ΔEIF(c.g.c).

b) Do ΔEID=ΔEIF(c.g.c) nên ID = IF (2 cạnh tương ứng).

Tam giác DIF có ID = IF nên tam giác DIF cân tại I.

Lời giải bài tập Toán 7 Bài 3: Tam giác cân hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác