Giải Toán 7 trang 115 Tập 2 Cánh diều

Với Giải Toán 7 trang 115 Tập 2 trong Bài 12: Tính chất ba đường trung trực của tam giác Toán 7 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 7 làm bài tập Toán 7 trang 115.

Bài 1 trang 115 Toán lớp 7 Tập 2: Cho tam giác ABC và điểm O thỏa mãn OA = OB = OC. Chứng minh rằng O là giao điểm ba đường trung trực của tam giác ABC.

Lời giải:

Do OA = OB nên O nằm trên đường trung trực của đoạn thẳng AB.

Do OB = OC nên O nằm trên đường trung trực của đoạn thẳng BC.

Tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng BC nên O là giao điểm ba đường trung trực của tam giác ABC.

Bài 2 trang 115 Toán lớp 7 Tập 2: Cho tam giác ABC. Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp sau:

a) Tam giác ABC nhọn;

b) Tam giác ABC vuông tại A;

c) Tam giác ABC có góc A tù.

Lời giải:

a) Ta có hình vẽ sau:

Cho tam giác ABC Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp

b) Ta có hình vẽ sau:

Cho tam giác ABC Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp

c) Ta có hình vẽ sau:

Cho tam giác ABC Vẽ điểm O cách đều ba đỉnh A, B, C trong mỗi trường hợp

Bài 3 trang 115 Toán lớp 7 Tập 2: Tam giác ABC có ba đường trung tuyến cắt nhau tại G. Biết rằng điểm G cũng là giao điểm của ba đường trung trực trong tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:

Tam giác ABC có ba đường trung tuyến cắt nhau tại G

Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.

Do G vừa là trọng tâm của tam giác và P là trung điểm của AB nên C, G, P thẳng hàng.

Do G là giao điểm ba đường trung trực của tam giác nên G nằm trên đường trung trực của cạnh AB do đó C nằm trên đường trung trực của đoạn thẳng AB.

Suy ra CA = CB.

Thực hiện tương tự ta thu được BA = BC.

Do đó AB = BC = CA.

Tam giác ABC có AB = BC = CA nên tam giác ABC đều.

Bài 4 trang 115 Toán lớp 7 Tập 2: Tam giác ABC có ba đường phân giác cắt nhau tại I. Biết rằng I cũng là giao điểm ba đường trung trực của tam giác ABC. Chứng minh tam giác ABC đều.

Lời giải:

Tam giác ABC có ba đường phân giác cắt nhau tại I Biết rằng I cũng là giao điểm ba đường trung trực

Gọi M, N, P lần lượt là chân đường cao kẻ từ I đến BC, CA, AB.

Do I là giao điểm ba đường phân giác của tam giác ABC nên IM = IN = IP.

Do I là giao điểm ba đường trung trực của tam giác ABC nên I nằm trên đường trung trực của các cạnh BC, CA, AB.

Suy ra đường thẳng qua I, vuông góc với BC, CA, AB lần lượt là đường trung trực của các cạnh BC, CA, AB.

Do đó M, N, P lần lượt là đường trung trực của các cạnh BC, CA, AB.

Suy ra M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.

Do AI là đường phân giác của BAC^ nên BAI^=CAI^.

Xét ∆PAI vuông tại P và ∆NAI vuông tại N có:

AI chung.

PAI^=NAI^ (chứng minh trên).

Suy ra ∆PAI = ∆NAI(cạnh huyền - góc nhọn).

Do đó PA = NA (2 cạnh tương ứng).

Mà P là trung điểm của AB nên PA = 12BA; N là trung điểm của CA nên NA = 12CA.

Suy ra AB = CA.

Thực hiện tương tự ta thu được BA = BC.

Do đó AB = BC = CA.

Tam giác ABC có AB = BC = CA nên tam giác ABC đều.

Bài 5 trang 115 Toán lớp 7 Tập 2: Cho tam giác ABC. Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O nằm trong tam giác. M là trung điểm của BC. Chứng minh:

a) OM ⊥ BC;

b) MOB^=MOC^.

Lời giải:

Cho tam giác ABC Đường trung trực của hai cạnh AB và AC cắt nhau tại điểm O

a) Tam giác ABC có O là giao điểm hai đường trung trực của đoạn thẳng AB và đoạn thẳng AC.

Mà ba đường trung trực trong tam giác đồng quy nên O nằm trên đường trung trực của đoạn thẳng BC.

Lại có M là trung điểm của BC nên OM là đường trung trực của đoạn thẳng BC.

Do đó OM ⊥ BC.

b) Do OM ⊥ BC nên ∆OMB và ∆OMC vuông tại M.

Xét ∆OMB vuông tại M và ∆OMC vuông tại M có:

OM chung.

MB = MC (theo giả thiết).

Do đó ∆OMB = ∆OMC (2 cạnh góc vuông).

Suy ra MOB^=MOC^ (2 góc tương ứng).

Lời giải bài tập Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác hay khác:

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác