Giải Toán 12 trang 7 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 7 Tập 2 trong Bài 11: Nguyên hàm Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 7.

Luyện tập 3 trang 7 Toán 12 Tập 2: Cho hàm số f(x) = xn (n ∈ ℕ*).

a) Chứng minh rằng hàm số Fx=xn+1n+1 là một nguyên hàm của hàm số f(x). Từ đó tìm xndx.

b) Từ kết quả câu a, tìm kxndx (k là hằng số thực khác 0).

Lời giải:

a) Vì F'x=xn+1n+1'=xn nên hàm số Fx=xn+1n+1 là một nguyên hàm của hàm số f(x).

Ta có xndx=xn+1n+1+C.

b) Ta có kxndx=kxndx=kxn+1n+1+C.

HĐ4 trang 7 Toán 12 Tập 2: Cho f(x) và g(x) là hai hàm số liên tục trên K. Giả sử F(x) là một nguyên hàm của f(x), G(x) là một nguyên hàm của g(x) trên K.

a) Chứng minh F(x) + G(x) là một nguyên hàm của hàm số f(x) + g(x) trên K.

b) Nêu nhận xét về fx+gxdxfxdx+gxdx.

Lời giải:

a) Vì F(x) là một nguyên hàm của f(x) nên F'(x) = f(x) và G(x) là một nguyên hàm của g(x) nên G'(x) = g(x).

Ta có (F(x) + G(x))' = F'(x) + G'(x) = f(x) + g(x).

Do đó F(x) + G(x) là một nguyên hàm của hàm số f(x) + g(x) trên K.

b) Ta có fx+gxdx=Fx+Gx+C với C là hằng số bất kì.

fxdx=Fx+C1;gxdx=Gx+C2 với C1; C2 là các hằng số bất kì.

Do đó fxdx+gxdx=Fx+C1+Gx+C2=Fx+Gx+C1+C2.

Ta có thể biểu diễn C = C1 + C2.

Do đó fxdx+gxdx=Fx+Gx+C.

Vậy fx+gxdx=fxdx+gxdx.

Luyện tập 4 trang 7 Toán 12 Tập 2: Tìm

a) 3x2+1dx;              b) 2x12dx

Lời giải:

a) 3x2+1dx=3x2dx+dx=x3+x+C.

b) 2x12dx=4x24x+1dx=4x2dx4xdx+dx=4x332x2+x+C

Lời giải bài tập Toán 12 Bài 11: Nguyên hàm hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác