Giải Toán 12 trang 22 Tập 2 Kết nối tri thức

Với Giải Toán 12 trang 22 Tập 2 trong Bài 13: Ứng dụng hình học của tích phân Toán 12 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 22.

Vận dụng 1 trang 22 Toán 12 Tập 2: Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.

Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.

(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:

Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.

Vận dụng 1 trang 22 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Hoành độ điểm cân bằng là nghiệm của phương trình:

−0,36x + 9 = 0,14x + 2 ⇔ x = 14.

Tọa độ điểm cân bằng là (14; 3,96).

Thặng dư tiêu dùng là:

S1=0140,36x+93,96dx=0140,36x+5,04dx

=0140,36x+5,04dx

Thặng dư sản xuất là:

S2=0143,960,14x2dx=0141,960,14xdx

=0141,960,14xdx=1,96x0,07x2014=13,72

HĐ3 trang 22 Toán 12 Tập 2: Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).

a) Tính thể tích V của hình trụ.

b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính abSxdx và so sánh với V.

HĐ3 trang 22 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Độ dài chiều cao hình trụ là: h = b – a.

Thể tích của hình trụ là: V = πR2h = πR2(b – a).

b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox là

S(x) = πR2.

Ta có abSxdx=abπR2dx=πR2xab=πR2ba

Vậy V=abSxdx

Vận dụng 2 trang 23 Toán 12 Tập 2: Tính thể tích của khối chóp cụt đều có diện tích hai đáy là S0, S1 và chiều cao bằng h (H.4.24). Từ đó suy ra công thức tính thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h.

Vận dụng 2 trang 23 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Chọn hệ trục tọa độ Oxyz như hình vẽ.

Gọi a, b lần lượt là khoảng cách từ O đến đáy nhỏ và đáy lớn của hình chóp. Khi đó chiều cao của hình chóp cụt là h = b – a.

Thiết diện của khối chóp cụt khi cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b) là một đa giác đều đồng dạng với đáy lớn của hình chóp cụt theo tỉ số đồng dạng là xb

Khi đó SxS1=x2b2Sx=x2b2.S1

Do đó thể tích khối chóp cụt đều là:

V=abSxdx=abx2b2S1dx=S1b2.x33ab=S13b2b3a3

=ba3b2.S1b2+S1ab+S1a2=h3.S1+S1ab+S1ab2

Vì S0S1=ab2S0=S1.ab2S0S1=S12.ab2S0S1=S1.ab

Do đó V=h3.S1+S1.S0+S0

Khối chóp đều được coi là khối chóp cụt đều khi S0 = 0.

Do đó thể tích khối chóp đều là V=13.S.h

HĐ4 trang 24 Toán 12 Tập 2: Xét hình phẳng giới hạn bởi đồ thị hàm số fx=12x, trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).

a) Tính thể tích V của khối nón.

b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là S(x) = πf2(x). Tính π04f2xdx và so sánh với V.

HĐ4 trang 24 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Ta có chiều cao của khối nón là h = 4, bán kính đáy của khối nón là R = 2.

Do đó thể tích của khối nón là V=13πR2h=13π.22.4=16π3

b)

HĐ4 trang 24 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là fx=12x

Khi đó diện tích mặt cắt là Sx=πf2x=π4x2

Ta có π04f2xdx=π04x24dx=π404x2dx=π4.x3304=16π3

Vậy V=π04f2xdx

Lời giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân hay khác:

Xem thêm lời giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Kết nối tri thức khác