Giải Toán 12 trang 24 Tập 2 Chân trời sáng tạo
Với Giải Toán 12 trang 24 Tập 2 trong Bài 3: Ứng dụng hình học của tích phân Toán 12 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 24.
Thực hành 3 trang 24 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = x2 – 2x – 1, y = x – 1 và hai đường thẳng x = 1, x = 4.
Lời giải:
Diện tích cần tính là:
.
Ta có x2 – 3x = 0 ⇔ x = 0 hoặc x = 3.
Do đó S
Thực hành 4 trang 24 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = 5x − x2, y = x2 – x và hai đường thẳng x = 0, x = 2.
Lời giải:
Diện tích cần tính là:
.
Ta có 6x – 2x2 = 0 ⇔ x = 0 hoặc x = 3.
Do đó
Vận dụng 1 trang 24 Toán 12 Tập 2: Mặt cắt của một cửa hầm có dạng là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 7. Tính diện tích của cửa hầm.
Lời giải:
Chon hệ tọa độ Oxy như hình vẽ.
Giả sử (P): y = ax2 + bx + c (a ≠ 0).
Vì (P) đi qua các điểm (0; 0), (6; 0), (3; 6) nên ta có:
.
Vậy (P): .
Bài toán trở thành tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng x = 0, x = 6.
Diện tích cần tính là:
m2.
Vậy diện tích của cửa hầm là 24 m2.
Hoạt động khám phá 3 trang 24 Toán 12 Tập 2: Trong không gian, cho hình chóp O.ABCD có đáy là hình vuông cạnh a, OA ⊥ (ABCD), OA = h. Đặt trục số Ox như Hình 8. Một mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 < x ≤ h), cắt hình chóp O.ABCD theo mặt cắt là hình vuông A'B'C'D'. Kí hiệu S(x) là diện tích của hình vuông A'B'C'D'.
a) Tính S(x) theo a, h và x.
b) Tính và so sánh với thể tích của khối chóp O.ABCD.
Lời giải:
a) Ta có A'B'C'D' đồng dạng với ABCD theo tỉ số đồng dạng là .
Do đó .
b) .
Có .
Vậy
Lời giải bài tập Toán 12 Bài 3: Ứng dụng hình học của tích phân hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST