Bài 18 trang 67 Toán 12 Tập 2 Chân trời sáng tạo
Bài 18 trang 67 Toán 12 Tập 2: Cho ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA2 = MB2 + MC2 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Lời giải:
MA2 = MB2 + MC2
⇔ (x – 1)2 + y2 + z2 = x2 + (y – 2)2 + z2 + x2 + y2 + (z – 3)2
⇔ x2 – 2x + 1 + y2 + z2 = x2 + y2 – 4y + 4 + z2 + x2 + y2 + z2 – 6z + 9
⇔ x2 + 2x + 1 + y2 – 4y + 4 + z2 – 6z + 9 – 2 = 0
⇔ (x + 1)2 + (y – 2)2 + (z – 3)2 = 2.
Do đó M luôn thuộc vào mặt cầu S với tâm I(−1; 2; 3) và
Lời giải bài tập Toán 12 Bài tập cuối chương 5 hay, chi tiết khác:
Bài 12 trang 67 Toán 12 Tập 2: Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1) ....
Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0) ....
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Toán 12 Bài 1: Tính giá trị gần đúng tích phân bằng máy tính cầm tay
Toán 12 Bài 2: Minh hoạ và tính tích phân bằng phần mềm GeoGebra
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST