Bài 13 trang 67 Toán 12 Tập 2 Chân trời sáng tạo
Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Lời giải:
a) Ta có ,
Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 ⇔ 8x – 3y – 2z + 4 = 0.
Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:
8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.
Do đó A ∉ (BCD). Suy ra ABCD là một tứ diện.
b) Ta có .
c) Ta có và , .
Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận có phương trình là (x + 2) – (z – 3) = 0 ⇔ x – z + 5 = 0.
Lời giải bài tập Toán 12 Bài tập cuối chương 5 hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes
Toán 12 Bài 1: Tính giá trị gần đúng tích phân bằng máy tính cầm tay
Toán 12 Bài 2: Minh hoạ và tính tích phân bằng phần mềm GeoGebra
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST