Bài 13 trang 67 Toán 12 Tập 2 Chân trời sáng tạo

Bài 13 trang 67 Toán 12 Tập 2: Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).

a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.

b) Tính chiều cao AH của tứ diện ABCD.

c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.

Lời giải:

a) Ta có BC=1;2;7,BD=0;4;6BC,BD=16;6;4

Mặt phẳng (BCD) đi qua B(1; 0; 6) và nhận n=12BC,BD=8;3;2 có phương trình là 8(x – 1) – 3y – 2(z – 6) = 0 ⇔ 8x – 3y – 2z + 4 = 0.

Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:

8.(−2) – 3.6 – 2.3 + 4 = −36 ≠ 0.

Do đó A ∉ (BCD). Suy ra ABCD là một tứ diện.

b) Ta có AH=dA,BCD=8.23.62.3+482+32+22=3677.

c) Ta có AB=3;6;3CD=1;2;1, AB,CD=12;0;12.

Mặt phẳng (α) đi qua A(−2; 6; 3) và nhận n=112AB,CD=1;0;1 có phương trình là (x + 2) – (z – 3) = 0 ⇔ x – z + 5 = 0.

Lời giải bài tập Toán 12 Bài tập cuối chương 5 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Chân trời sáng tạo khác