Bài 11 trang 38 Toán 12 Tập 1 Chân trời sáng tạo
Bài 11 trang 38 Toán 12 Tập 1: Cho hàm số .
a) Khảo sát và vẽ đồ thị của hàm số.
b) Tính khoảng cách giữa hai điểm cực trị của đồ thị hàm số.
Lời giải:
a) Xét hàm số .
1. Tập xác định: ℝ.
2. Sự biến thiên:
● Chiều biến thiên:
Đạo hàm y' = x2 – 2x; y' = 0 ⇔ x = 0 hoặc x = 2.
Trên các khoảng (– ∞; 0) và (2; + ∞), y' > 0 nên hàm số đồng biến trên mỗi khoảng đó.
Trên khoảng (0; 2), y' < 0 nên hàm số nghịch biến trên khoảng đó.
● Cực trị:
Hàm số đạt cực đại tại x = 0 và yCĐ = 4.
Hàm số đạt cực tiểu tại x = 2 và yCT = .
● Các giới hạn tại vô cực:
Bảng biến thiên:
3. Đồ thị:
Khi x = 0 thì y = 4 nên (0; 4) là giao điểm của đồ thị với trục Oy.
Ta có y = 0 ⇔ = 0, phương trình này có 1 nghiệm nên đồ thị của hàm số giao với trục Ox tại 1 điểm.
Điểm (0; 4) là cực đại và điểm là điểm cực tiểu của đồ thị hàm số.
Đồ thị hàm số đi qua điểm (3; 4).
Đồ thị của hàm số đã cho được biểu diễn như hình dưới đây.
Đồ thị của hàm số có tâm đối xứng là điểm I.
b) Hai điểm cực trị của đồ thị hàm số là (0; 4) và .
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số là
.
Lời giải bài tập Toán 12 Bài tập cuối chương 1 hay, chi tiết khác:
Bài 2 trang 37 Toán 12 Tập 1: Cho hàm số y = f(x) có đồ thị như Hình 1 ....
Bài 3 trang 37 Toán 12 Tập 1: Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng? ....
Bài 5 trang 37 Toán 12 Tập 1: Giá trị nhỏ nhất của hàm số trên đoạn [– 2; 3] là ....
Bài 6 trang 37 Toán 12 Tập 1: Tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình ....
Bài 7 trang 37 Toán 12 Tập 1: Tiệm cận đứng của đồ thị hàm số là đường thẳng có phương trình ....
Bài 8 trang 38 Toán 12 Tập 1: Cho hàm số . Trong các khẳng định sau, khẳng định nào đúng? ....
Bài 9 trang 38 Toán 12 Tập 1: Tìm hai số không âm a và b có tổng bằng 10 sao cho: ....
Bài 12 trang 38 Toán 12 Tập 1: Cho hàm số . Khảo sát và vẽ đồ thị của hàm số. ....
Bài 13 trang 38 Toán 12 Tập 1: Cho hàm số . Khảo sát và vẽ đồ thị của hàm số.....
Xem thêm lời giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 12 Chân trời sáng tạo
- Giải SBT Toán 12 Chân trời sáng tạo
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Cánh diều (các môn học)
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST