Giải Toán 12 trang 96 Tập 2 Cánh diều
Với Giải Toán 12 trang 96 Tập 2 trong Bài 1: Xác xuất có điều kiện Toán 12 Tập 2 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12 trang 96.
Bài 4 trang 96 Toán 12 Tập 2: Cho hai biến cố A, B có P(A) = 0,6; P(B) = 0,8; P(A ∩ B) = 0,4. Tính các xác suất sau:
a) P(B | A);
b) P(A ∩ );
c) P( | A).
Lời giải:
a) Ta có P(B | A) = .
b) Vì A ∩ và A ∩ B là hai biến cố xung khắc và (A ∩ ) ∪ (A ∩ B) = A nên theo tính chất của xác suất ta có P(A) = P(A ∩ ) + P(A ∩ B).
Suy ra P(A ∩ ) = P(A) – P(A ∩ B) = 0,6 – 0,4 = 0,2.
c) Ta có c) Ta có P( | A) =
Bài 5 trang 96 Toán 12 Tập 2: Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp. Xét các biến cố:
A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”;
B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Chứng minh rằng A, B là hai biến cố độc lập.
Lời giải:
Cách 1:
Theo bài ra ta có: n(Ω) = 7 ∙ 7 = 49; n(A) = 3 ∙ 7 = 21; n(B) = 7 ∙ 4 = 28.
Do đó, P(A) = ; P(B) = . Suy ra .
Ta có biến cố A ∩ B: “Quả bóng màu xanh được lấy ra ở lần thứ nhất và quả bóng màu đỏ được lấy ra ở lần thứ hai”. Suy ra P(A ∩ B) = .
Khi đó, P(A | B) = .
Ta có biến cố A ∩ : “Quả bóng màu xanh được lấy ra ở cả hai lần”.
Suy ra P(A ∩ ) = .
Khi đó, P(A | ) = .
Vậy ta có P(A) = P(A | B) = P(A | ) = . (1)
Tương tự, ta tính được:
P(B | A) = ; P(B | ) = .
Vậy ta có P(B) = P(B | A) = P(B | ) = . (2)
Từ (1) và (2) suy ra A, B là hai biến cố độc lập.
Cách 2:
Nếu A xảy ra, tức là quả bóng màu xanh được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Nếu A không xảy ra, tức là quả bóng màu đỏ được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp vẫn có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Như vậy, xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.
Vì lần thứ nhất lấy và lần thứ hai lấy sau lần thứ nhất nên P(A) = dù biến cố B có xảy ra hay không xảy ra.
Vậy A và B là hai biến cố độc lập.
Bài 6 trang 96 Toán 12 Tập 2: Cho hai xúc xắc cân đối và đồng chất. Gieo lần lượt từng xúc xắc trong hai xúc xắc đó. Tính xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Lời giải:
Xét hai biến cố:
A: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”;
B: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Khi đó, xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, chính là xác suất có điều kiện P(A | B).
Vì gieo lần lượt từng xúc xắc trong hai xúc xắc đó nên n(Ω) = 6 ∙ 6 = 36.
Xúc xắc thứ nhất xuất hiện mặt 4 chấm thì có 1 cách chọn, xúc xắc thứ hai có 6 cách chọn mặt xuất hiện. Do đó, P(B) = .
Biến cố A ∩ B: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, để có tổng số chấm bằng 6 thì xúc xắc thứ hai phải xuất hiện mặt 2 chấm. Do đó, P(A ∩ B) = .
Khi đó, ta có P(A | B) = .
Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, là
Bài 7 trang 96 Toán 12 Tập 2: Một doanh nghiệp trước khi xuất khẩu áo sơ mi trong lô hàng S phải qua hai lần kiểm tra chất lượng sản phẩm, nếu cả hai lần đều đạt thì chiếc áo trong lô hàng đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra thứ nhất sẽ tiếp tục qua được lần kiểm tra thứ hai. Chọn ra ngẫu nhiên một chiếc áo sơ mi trong lô hàng S. Tính xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu.
Lời giải:
Gọi A là biến cố: “chiếc áo sơ mi trong lô hàng S được chọn qua được lần kiểm tra thứ nhất”, B là biến cố: “chiếc áo sơ mi trong lô hàng S được chọn qua được lần kiểm tra thứ hai”, C là biến cố: “chiếc áo sơ mi được chọn đủ tiêu chuẩn xuất khẩu”.
Theo bài ra ta có: P(A) = 98% = 0,98; P(B | A) = 95% = 0,95.
Một chiếc áo đủ tiêu chuẩn xuất khẩu khi cả hai lần kiểm tra chất lượng sản phẩm đều đạt. Xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là:
P(C) = P(A) ∙ P(B | A) = 0,98 ∙ 0,95 = 0,931.
Bài 8 trang 96 Toán 12 Tập 2: Một lô sản phẩm có 20 sản phẩm, trong đó có 5 sản phẩm chất lượng thấp. Lấy liên tiếp 2 sản phẩm trong lô sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào lô sản phẩm. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp.
Lời giải:
Xét hai biến cố:
A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”;
B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.
Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là xác suất có điều kiện P(B | A).
Nếu A xảy ra tức là sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp. Khi đó, trong lô sản phẩm còn lại 19 sản phẩm với 4 sản phẩm chất lượng thấp. Vậy P(B | A) = .
Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là
Bài 9 trang 96 Toán 12 Tập 2: Trên giá sách có 10 quyển sách Khoa học và 15 quyển sách Nghệ thuật. Có 9 quyển sách viết bằng tiếng Anh, trong đó 3 quyển sách Khoa học và 6 quyển sách Nghệ thuật, các quyển sách còn lại viết bằng tiếng Việt. Lấy ngẫu nhiên một quyển sách. Dùng sơ đồ hình cây, tính xác suất để quyển sách được lấy ra là sách viết bằng tiếng Việt, biết rằng quyển sách đó là sách Khoa học.
Lời giải:
Vì có 9 quyển sách viết bằng tiếng Anh, trong đó 3 quyển sách Khoa học và 6 quyển sách Nghệ thuật, các quyển sách còn lại viết bằng tiếng Việt nên ta có:
10 + 15 – 9 = 16 quyển sách viết bằng tiếng Việt,
trong đó có 10 – 3 = 7 quyển sách Khoa học và 15 – 6 = 9 quyển sách Nghệ thuật.
Xét hai biến cố sau:
A: “Quyển sách được lấy ra là sách viết bằng tiếng Việt”;
B: “Quyển sách được lấy ra là sách Khoa học”.
Khi đó, xác suất để quyển sách được lấy ra là sách viết bằng tiếng Việt, biết rằng quyển sách đó là sách Khoa học, chính là xác suất có điều kiện P(A | B).
Sơ đồ hình cây biểu thị cách tính xác suất có điều kiện P(A | B), được vẽ như sau:
Vậy xác suất để quyển sách được lấy ra là sách viết bằng tiếng Việt, biết rằng quyển sách đó là sách Khoa học, là = 0,7.
Lời giải bài tập Toán 12 Bài 1: Xác xuất có điều kiện hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều