Giải Toán 12 trang 13 Tập 1 Cánh diều
Với Giải Toán 12 trang 13 Tập 1 trong Bài 1: Tính đơn điệu của hàm số Toán 12 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 12 dễ dàng làm bài tập Toán 12 trang 13.
Bài 1 trang 13 Toán 12 Tập 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (1; + ∞).
B. (– 1; 0).
C. (– 1; 1).
D. (0; 1).
Lời giải:
Đáp án đúng là: D
Quan sát bảng biến thiên ta thấy f'(x) > 0 với mọi x ∈ (– ∞; – 1) ∪ (0; 1).
Vậy hàm số đã cho đồng biến trên mỗi khoảng (– ∞; – 1), (0; 1).
Bài 2 trang 13 Toán 12 Tập 1: Cho hàm số y = f(x) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
A. 2.
B. 3.
C. – 4.
D. 0.
Lời giải:
Đáp án đúng là: C
Quan sát bảng biến thiên ta thấy hàm số đạt cực tiểu tại điểm x = 3 và giá trị cực tiểu của hàm số bằng – 4.
Bài 3 trang 13 Toán 12 Tập 1: Tìm các khoảng đơn điệu của mỗi hàm số sau:
a) y = – x3 + 2x2 – 3;
b) y = x4 + 2x2 + 5;
c) ;
d)
Lời giải:
a)
• Hàm số đã cho có tập xác định là ℝ.
• Ta có y' = – 3x2 + 4x;
y' = 0 ⇔ – 3x2 + 4x = 0 ⇔ x(3x – 4) = 0 ⇔ x = 0 hoặc x = .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên khoảng và nghịch biến trên mỗi khoảng (– ∞; 0) và .
b) y = x4 + 2x2 + 5
• Hàm số đã cho có tập xác định là ℝ.
• Ta có y' = 4x3 + 4x;
y' = 0 ⇔ 4x3 + 4x = 0 ⇔ x(x2 + 1) = 0 ⇔ x = 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên khoảng (0; + ∞) và nghịch biến trên khoảng (– ∞; 0).
c)
• Hàm số đã cho có tập xác định là ℝ\{2}.
• Ta có với x ≠ 2;
y' > 0 với mọi x ≠ 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; 2) và (2; + ∞).
d)
• Hàm số đã cho có tập xác định là ℝ\{– 1}.
• Ta có với x ≠ – 1;
y' = 0 ⇔ x2 + 2x – 2 = 0 ⇔ x = - 1 - hoặc x = -1 + .
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng và ; nghịch biến trên mỗi khoảng và .
Bài 4 trang 13 Toán 12 Tập 1: Tìm điểm cực trị của mỗi hàm số sau:
a) y = 2x3 + 3x2 – 36x – 10;
b) y = – x4 – 2x2 + 9;
c) y = x + .
Lời giải:
a)
• Hàm số đã cho có tập xác định là ℝ.
• Ta có y' = 6x2 + 6x – 36;
y' = 0 ⇔ 6x2 + 6x – 36 = 0 ⇔ x = – 3 hoặc x = 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực tiểu tại x = 2 và đạt cực đại tại x = – 3.
b) y = – x4 – 2x2 + 9
• Hàm số đã cho có tập xác định là ℝ.
• Ta có y' = – 4x3 – 4x;
y' = 0 ⇔ – 4x3 – 4x = 0 ⇔ x3 + x = 0 ⇔ x = 0.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đã cho đạt cực đại tại x = 0.
c) y = x + .
• Hàm số đã cho có tập xác định là ℝ\{0}.
• Ta có y' = với x ≠ 0;
y' = 0 ⇔ x = – 1 hoặc x = 1.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực tiểu tại điểm x = 1 và đạt cực đại tại điểm x = – 1.
Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu của hàm số hay khác:
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Toán 12 Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Toán 12 Bài 4: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều