Bài 7 trang 42 Toán 12 Tập 2 Cánh diều

Bài 7 trang 42 Toán 12 Tập 2: Một khinh khí cầu bay với độ cao (so với mực nước biển) tại thời điểm t là h(t), trong đó t tính bằng phút, h(t) tính bằng mét. Tốc độ bay của khinh khí cầu được cho bởi hàm số

v(t) = – 0,12t2 + 1,2t,

với t tính bằng phút, v(t) tính bằng mét/phút. Tại thời điểm xuất phát (t = 0), khinh khí cầu ở độ cao 520 m và 5 phút sau khi xuất phát, khinh khí cầu đã ở độ cao 530 m.

(Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016)

a) Viết công thức xác định hàm số h(t) (0 ≤ t ≤ 29).

b) Độ cao tối đa của khinh khí cầu khi bay là bao nhiêu?

c) Khi nào khinh khí cầu sẽ trở lại độ cao khi xuất phát?

Lời giải:

a) Hàm số h(t) là một nguyên hàm của hàm số v(t).

Ta có vtdt=0,12t2+1,2tdt=0,04t3+0,6t2+C.

Suy ra h(t) = – 0,04t3 + 0,6t2 + C.

Vì với t = 0 thì h = 520, tức là h(0) = 520, suy ra C = 520.

Vậy h(t) = – 0,04t3 + 0,6t2 + 520 (0 ≤ t ≤ 29).

b) Độ cao tối đa của khinh khí cầu khi bay chính là giá trị lớn nhất của hàm số h(t) trên đoạn [0; 29].

Ta có h'(t) = v(t) = – 0,12t2 + 1,2t.

Trên khoảng (0; 29), h'(t) = 0 khi t = 10.

h(0) = 520, h(10) = 540, h(29) = 49,04.

Suy ra max0;29ht=540 tại t = 10.

Vậy độ cao tối đa của khinh khí cầu là 540 m.

c) Khinh khí cầu trở lại độ cao khi xuất phát khi h(t) = 520, tức là

– 0,04t3 + 0,6t2 + 520 = 520 ⇔ 0,04t3 – 0,6t2 = 0 ⇔ t = 0 hoặc t = 15.

Với t = 0, tức là tại thời điểm xuất phát.

Với t = 15 ∈ [0; 29], thỏa mãn.

Vậy sau 15 phút thì khinh khí cầu trở lại độ cao khi xuất phát.

Lời giải bài tập Toán 12 Bài tập cuối chương 4 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác