Bài 5 trang 42 Toán 12 Tập 2 Cánh diều
Bài 5 trang 42 Toán 12 Tập 2: a) Cho hàm số f(x) = x2 + e– x. Tìm nguyên hàm F(x) của hàm số f(x) trên ℝ sao cho F(0) = 2 023.
b) Cho hàm số (x > 0). Tìm nguyên hàm G(x) của hàm số g(x) trên khoảng (0; + ∞) sao cho G(1) = 2 023.
Lời giải:
a) Ta có .
Suy ra .
Mà F(0) = 2 023 nên , suy ra C = 2 024.
Vậy .
b) Ta có (do x > 0).
Suy ra G(x) = ln x + C.
Mà G(1) = 2 023 nên ln 1 + C = 2 023, suy ra C = 2 023.
Vậy G(x) = ln x + 2 023.
Lời giải bài tập Toán 12 Bài tập cuối chương 4 hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 12 hay khác:
- Giải sgk Toán 12 Cánh diều
- Giải Chuyên đề học tập Toán 12 Cánh diều
- Giải SBT Toán 12 Cánh diều
- Giải lớp 12 Cánh diều (các môn học)
- Giải lớp 12 Kết nối tri thức (các môn học)
- Giải lớp 12 Chân trời sáng tạo (các môn học)
Giải bài tập lớp 12 Cánh diều khác
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều