Bài 7 trang 14 Toán 12 Tập 1 Cánh diều

Bài 7 trang 14 Toán 12 Tập 1: Kính viễn vọng không gian Hubble được đưa vào vũ trụ ngày 24/4/1990 bằng tàu con thoi Discovery. Vận tốc của tàu con thoi trong sứ mệnh này, từ lúc cất cánh tại thời điểm t = 0 (s) cho đến khi tên lửa đẩy được phóng đi tại thời điểm t = 126 (s), cho bởi hàm số sau:

v(t) = 0,001302t3 – 0,09029t2 + 23,

(v được tính bằng ft/s, 1 feet = 0,3048 m)

(Nguồn: J. Stewart, Calculus, Seventh Edition, Brooks/Cole, CENGAGE Learning 2012)

Bài 7 trang 14 Toán 12 Tập 1 Cánh diều | Giải Toán 12

Hỏi gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian nào tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi?

Lời giải:

Xét hàm số vận tốc của tàu con thoi v(t) = 0,001302t3 – 0,09029t2 + 23 với t ∈ [0; 126].

Gia tốc của tàu con thoi là a(t) = v'(t) = 0,003906t2 – 0,18058t.

Ta có a'(t) = 0,007812t – 0,18058

a'(t) = 0 ⇔ t ≈ 23.

Bảng biến thiên của hàm số a(t) như sau:

Bài 7 trang 14 Toán 12 Tập 1 Cánh diều | Giải Toán 12

Vậy gia tốc của tàu con thoi sẽ tăng trong khoảng thời gian (23 s; 126 s) tính từ thời điểm cất cánh cho đến khi tên lửa đẩy được phóng đi.

Lời giải bài tập Toán 12 Bài 1: Tính đơn điệu của hàm số hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 Cánh diều khác